Internet Monitoring Of Prescription Drug Abuse

处方药滥用的互联网监控

基本信息

  • 批准号:
    8023201
  • 负责人:
  • 金额:
    $ 6.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This Phase II application continues development of the Pharmaceutical Risk Internet Surveillance Monitor (PRISM), an innovative approach to postmarketing surveillance of indicators suggesting diversion/abuse of opioid pharmaceutical agents. Public health relevance of PRISM includes providing reliable and timely data to allow health, law enforcement, industry, and community leaders take steps to limit potential damage associated with an outbreak of pharmaceutical drug abuse. PRISM will be the first, systematically developed and hybrid or partially automated Internet monitoring service to track, at a product-specific level, the chatter of recreational users of pharmaceutical analgesics as they discuss their use/abuse of such drugs. Those who abuse prescription opioids have open access to Web sites, providing an unvarnished picture of users' communications about these drugs, including ideas and beliefs about the drugs as well as discussions of trends and preferences. Thus, Internet monitoring of drug-related messages may be useful for anticipating an increased risk of an abuse outbreak. The potential of these Internet data has not been exploited in a systematic manner to inform drug policy and planning. In Phase I, collaboration with software developers of MIT's General Inquirer (GI) explored the contributions of automated natural language processing methods to the unstructured, fragmented, but revealing messages posted by the online community of substance abusers. Reliable codes were achieved by human coders, supporting the feasibility of classifying content of Internet posts into meaningful categories of endorsing and discouraging abuse of different products. Completely automating such coding may be as yet out of reach. Furthermore, such codes may not have been the most meaningful qualitative information to draw from the posts. However, the overall level of chatter, based on counts of mentions of specific products, did appear to relate to measures of the attractiveness for abuse of target products. There are significant benefits of archiving such posts, using computer processing of raw posts to prep them for human coders, and searching among thousands of archived posts for selected topics of interest (e.g., sources, extraction methods, adverse events, etc.). In Phase II, we will (1) develop software to find, harvest, and archive posts from eligible Web sites for subsequent analyses, (2) refine the nature and types of qualitative questions, (3) develop and test methods of using automated processing of raw posts to improve the reliability and efficiency of human coding, (4) continue exploration of methods to enhance automation of message coding, (5) refine automated data mining of posts discussions on specific topics including (extraction, sources of drug, extreme reactions, etc.) to target drugs, and (6) test external validity of data collected by PRISM. Given the extraordinary financial implications for pharmaceutical companies needing to demonstrate to the FDA that they have an adequate Risk Minimization Action Plan prior to approval for new, potentially addictive medications, a tool like PRISM holds remarkable commercial appeal. Public Health Relevance: A system like PRISM to monitor the chatter about abusable substances on Internet is widely recognized as having extraordinary public health importance by the FDA, DEA, and pharmaceutical companies. Ongoing, systematic collection, analysis, and interpretation of abuse trends detected from these Internet sources will be essential to the planning, implementation, and evaluation of public health programs, closely integrated with timely dissemination of these data to those responsible for prevention and control.
描述(由申请人提供):本II期申请继续开发药物风险互联网监测器(PRISM),这是一种对表明阿片类药物转移/滥用的指标进行上市后监测的创新方法。PRISM的公共卫生相关性包括提供可靠和及时的数据,以便卫生,执法,行业和社区领导人采取措施,限制与药物滥用爆发相关的潜在损害。PRISM将是第一个系统开发的混合或部分自动化的互联网监测服务,用于在具体产品一级跟踪药物止痛剂娱乐使用者在讨论其使用/滥用此类药物时的闲聊。滥用处方类阿片的人可以公开访问网站,提供用户关于这些药物的通信的真实情况,包括关于药物的想法和信念以及关于趋势和偏好的讨论。因此,对与药物有关的信息进行互联网监测可能有助于预测滥用爆发的风险是否会增加。这些互联网数据的潜力尚未得到系统的利用,以供制定药物政策和规划时参考。在第一阶段,与麻省理工学院的General Inquirer(GI)的软件开发人员合作,探索了自动化自然语言处理方法对药物滥用者在线社区发布的非结构化,碎片化但揭示性信息的贡献。可靠的代码是由人类编码器实现的,支持将互联网帖子的内容分类为有意义的类别的可行性,这些类别支持和阻止滥用不同的产品。完全自动化这种编码可能还遥不可及。此外,这些代码可能不是从员额中获得的最有意义的质量信息。然而,根据提及具体产品的次数,聊天的总体水平似乎确实与目标产品对滥用的吸引力有关。将这些帖子存档,使用原始帖子的计算机处理来为人类编码器准备它们,以及在数千个存档帖子中搜索感兴趣的选定主题(例如,来源、提取方法、不良事件等)。在第二阶段,我们将(1)开发软件,从合格的网站中查找、收集和存档帖子,以便随后进行分析,(2)改进定性问题的性质和类型,(3)开发和测试使用自动处理原始帖子的方法,以提高人工编码的可靠性和效率,(4)继续探索提高信息编码自动化的方法,(5)完善对特定主题的帖子讨论的自动数据挖掘,包括(提取,药物来源,极端反应等)(6)检验PRISM数据的外部效度。考虑到制药公司需要向FDA证明他们在批准新的潜在成瘾药物之前有足够的风险最小化行动计划,因此像PRISM这样的工具具有显着的商业吸引力。 公共卫生相关性:像PRISM这样的监控互联网上关于滥用物质的聊天的系统被FDA、DEA和制药公司广泛认为具有非凡的公共卫生重要性。持续、系统地收集、分析和解释从这些互联网来源发现的滥用趋势,对于规划、实施和评估公共卫生方案至关重要,并与及时向负责预防和控制的人员传播这些数据密切结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen F Butler其他文献

How did you know you got the right pill? Prescription opioid identification and measurement error in the abuse deterrent formulation era
  • DOI:
    10.1186/1940-0640-10-s1-a16
  • 发表时间:
    2015-02-20
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Traci C Green;Carolyn Griffel;Taryn Dailey;Priyanka Garg;Eileen Thorley;Courtney Kaczmarsky;Theresa Cassidy;Stephen F Butler
  • 通讯作者:
    Stephen F Butler

Stephen F Butler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen F Butler', 18)}}的其他基金

A Clinical Decision Support Tool for Electronic Health Records
电子健康记录的临床决策支持工具
  • 批准号:
    8737826
  • 财政年份:
    2011
  • 资助金额:
    $ 6.06万
  • 项目类别:
Pain Assessment Interview and Clinical Advisory System
疼痛评估访谈和临床咨询系统
  • 批准号:
    8056298
  • 财政年份:
    2011
  • 资助金额:
    $ 6.06万
  • 项目类别:
Pain Assessment Interview and Clinical Advisory System
疼痛评估访谈和临床咨询系统
  • 批准号:
    8231327
  • 财政年份:
    2011
  • 资助金额:
    $ 6.06万
  • 项目类别:
A Clinical Decision Support Tool for Electronic Health Records
电子健康记录的临床决策支持工具
  • 批准号:
    8455315
  • 财政年份:
    2011
  • 资助金额:
    $ 6.06万
  • 项目类别:
Signal Detection for Prescription Opioid Outbreaks
处方阿片类药物爆发的信号检测
  • 批准号:
    7536247
  • 财政年份:
    2008
  • 资助金额:
    $ 6.06万
  • 项目类别:
Pain Assessment Interview and Clinical Advisory System
疼痛评估访谈和临床咨询系统
  • 批准号:
    7481406
  • 财政年份:
    2008
  • 资助金额:
    $ 6.06万
  • 项目类别:
A BABOON MODEL OF DEGENERATIVE DISC DISEASE: A PILOT STUDY TO EVALUATE
椎间盘退变性疾病的狒狒模型:一项评估试点研究
  • 批准号:
    7562453
  • 财政年份:
    2007
  • 资助金额:
    $ 6.06万
  • 项目类别:
A Computerized Adaptive Testing Version of the ASI
ASI 的计算机化自适应测试版本
  • 批准号:
    8261989
  • 财政年份:
    2007
  • 资助金额:
    $ 6.06万
  • 项目类别:
A Computerized Adaptive Testing Version of the ASI
ASI 的计算机化自适应测试版本
  • 批准号:
    8063199
  • 财政年份:
    2007
  • 资助金额:
    $ 6.06万
  • 项目类别:
A Computerized Adaptive Testing Version of the ASI
ASI 的计算机化自适应测试版本
  • 批准号:
    7903746
  • 财政年份:
    2007
  • 资助金额:
    $ 6.06万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 6.06万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 6.06万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 6.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了