Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
基本信息
- 批准号:8076178
- 负责人:
- 金额:$ 14.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAffectAmericanBehaviorBiological AssayCeliac DiseaseCellsCharacteristicsChargeColitisCytoskeletonDataDevelopmentDiarrheaDiseaseElectrodesElectrophysiology (science)EnvironmentEpithelialEventExposure toFigs - dietaryFunctional disorderGastrointestinal DiseasesGoalsHealthHumanInflammatoryInflammatory Bowel DiseasesIntegumentary systemInterleukin-13Intestinal DiseasesIntestinesIon ChannelIonsKidneyKnowledgeLamina PropriaLungMeasurementMeasuresMethodsMicroscopicMolecularMorbidity - disease rateMyosin Light Chain KinaseNeuraxisNutrientOrganPatch-Clamp TechniquesPathologistPathway interactionsPatientsProcessProteinsPublishingQualifyingRegulationReportingResearchResearch PersonnelResolutionRoleSkinSymptomsTherapeuticTight JunctionsTimeTrainingTumor Necrosis Factor-alphaVoltage-Clamp Technicsbasecytokinegastrointestinalimprovedinnovationintestinal epitheliumnovel strategiesoccludinpatch clamppublic health relevanceskillssmall moleculesubmicrontherapy development
项目摘要
DESCRIPTION (provided by applicant): Intestinal barrier function is reduced in inflammatory bowel disease (IBD) and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Published reports and my preliminary data, which assess the role of different inflammatory cytokines in the lamina propria of IBD patients, support the hypothesis that at least two mechanisms of tight junction barrier regulation are activated by inflammatory cytokines. TNF induces tight junction dysfunction via a mechanism involving occludin internalization that alters tight junction size selectivity and permits increased macromolecular flux. In contrast IL-13 activates a functionally distinct pathway involving expression of claudin proteins that affects ion selectivity but does not increase macromolecular flux. Despite advances in understanding the processes involved in cytokine-induced barrier regulation, the molecular events that define size- or ion-selective changes are unclear. This, in part, represents the technical obstacle posed by traditional time and spatially averaged measurements of barrier function. I hypothesize that the tight junction barrier is highly dynamic at the local, sub-micron level, and that regulation of paracellular flux occurs through modulation of opening and closing "events" involving more than one class of tight junction pore or other conductance pathway. Because the tight junction spans two cells, it has not been amenable to molecular and biophysical analyses and development of specific pharmacologic modulators, such as those that exist for transmembrane ion channels. In order to eliminate this gap in available methods and molecular understanding, I have developed a novel approach to analyze tight junction barrier function at the local sub-micron level, using a high resolution single electrode patch clamp technique. While this approach is extensively used in the study of transmembrane ion channels and transporters, it has not been applied to the study of tight junction function. My preliminary recordings using this approach show previously unrecognized barrier dynamics, and I hypothesize that this behavior underlies normal tight junction function as a selectively-permeable barrier and is also necessary for understanding the molecular mechanisms and basis for multiple pathways of barrier dysfunction in disease. These local measurements will be performed alongside traditional assays of tight junction function (Aim 1) to study tight junction dynamics at steady state (Aim 2) and after exposure to inflammatory cytokines IL-13 and TNF (Aim 3). The data will have significant positive effects on human health by improving the understanding of barrier function and dysfunction, which may provide better therapeutic approaches for intestinal disorders such as IBD, celiac disease, and infectious colitis. Furthermore, both the knowledge gained and the technical approaches developed will be easily adapted to the study of tight junctions in other organs, including integument, central nervous system, vasculature, lung, kidney, and skin, and, therefore, may have broad impact beyond gastrointestinal disease.
PUBLIC HEALTH RELEVANCE: Narrative Intestinal barrier function is reduced in inflammatory bowel disease and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Barrier dysfunction involves separate mechanisms for ionic and macromolecular flux, but the molecular basis for these different pathways is unclear. The research outlined will study these mechanisms using high resolution patch clamp recordings of tight junction barrier dynamics.
描述(由申请人提供):肠道屏障功能在炎症性肠病(IBD)和其他肠道疾病中降低。形成主要细胞旁屏障的紧密连接的改变通过增加离子和分子的旁细胞通量而导致屏障丧失。已发表的报告和我的初步数据评估了 IBD 患者固有层中不同炎症细胞因子的作用,支持这样的假设:炎症细胞因子激活至少两种紧密连接屏障调节机制。 TNF 通过涉及 occludin 内化的机制诱导紧密连接功能障碍,从而改变紧密连接尺寸选择性并允许增加大分子通量。相比之下,IL-13 激活一条功能独特的途径,涉及密蛋白的表达,影响离子选择性,但不会增加大分子通量。尽管在了解细胞因子诱导的屏障调节过程方面取得了进展,但定义尺寸或离子选择性变化的分子事件尚不清楚。这在一定程度上代表了屏障功能的传统时间和空间平均测量所带来的技术障碍。我假设紧密连接屏障在局部、亚微米水平上是高度动态的,并且细胞旁通量的调节是通过调节涉及不止一类紧密连接孔或其他电导途径的打开和关闭“事件”而发生的。由于紧密连接跨越两个细胞,因此它不适合分子和生物物理分析以及特定药理调节剂的开发,例如跨膜离子通道中存在的调节剂。为了消除现有方法和分子理解方面的差距,我开发了一种新方法,使用高分辨率单电极膜片钳技术在局部亚微米水平上分析紧密连接势垒功能。虽然这种方法广泛用于跨膜离子通道和转运蛋白的研究,但尚未应用于紧密连接功能的研究。我使用这种方法进行的初步记录显示了以前未被识别的屏障动力学,并且我假设这种行为是作为选择性渗透屏障的正常紧密连接功能的基础,并且对于理解疾病中屏障功能障碍的多种途径的分子机制和基础也是必要的。这些局部测量将与传统的紧密连接功能测定(目标 1)一起进行,以研究稳定状态下的紧密连接动力学(目标 2)以及暴露于炎症细胞因子 IL-13 和 TNF 后(目标 3)。这些数据将通过提高对屏障功能和功能障碍的理解对人类健康产生显着的积极影响,这可能为IBD、乳糜泻和传染性结肠炎等肠道疾病提供更好的治疗方法。此外,所获得的知识和开发的技术方法将很容易适应其他器官紧密连接的研究,包括体皮、中枢神经系统、脉管系统、肺、肾和皮肤,因此可能具有胃肠道疾病以外的广泛影响。
公众健康相关性:叙述 炎症性肠病和其他肠道疾病会导致肠道屏障功能降低。形成主要细胞旁屏障的紧密连接的改变通过增加离子和分子的旁细胞通量而导致屏障丧失。屏障功能障碍涉及离子和大分子通量的不同机制,但这些不同途径的分子基础尚不清楚。概述的研究将使用紧密连接势垒动力学的高分辨率膜片钳记录来研究这些机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Weber其他文献
Christopher Weber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Weber', 18)}}的其他基金
Mechanisms of tight junction pore and leak pathway regulation in intestinal mucos
肠粘膜紧密连接孔和渗漏途径的调节机制
- 批准号:
8881173 - 财政年份:2014
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of tight junction pore and leak pathway regulation in intestinal mucos
肠粘膜紧密连接孔和渗漏途径的调节机制
- 批准号:
8770614 - 财政年份:2014
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8712475 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8485599 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
7958930 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8312730 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of epithelial barrier dysfunction mediated by inflammatory cytokines
炎症细胞因子介导的上皮屏障功能障碍机制
- 批准号:
7675967 - 财政年份:2008
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of epithelial barrier dysfunction mediated by inflammatory cytokines
炎症细胞因子介导的上皮屏障功能障碍机制
- 批准号:
7539581 - 财政年份:2008
- 资助金额:
$ 14.66万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




