Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
基本信息
- 批准号:8485599
- 负责人:
- 金额:$ 14.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAffectAmericanBehaviorBiological AssayCeliac DiseaseCellsCharacteristicsChargeColitisCytoskeletonDataDevelopmentDiarrheaDiseaseElectrodesElectrophysiology (science)EnvironmentEpithelialEventExposure toFigs - dietaryFunctional disorderGastrointestinal DiseasesGoalsHealthHumanInflammatoryInflammatory Bowel DiseasesIntegumentary systemInterleukin-13Intestinal DiseasesIntestinesIon ChannelIonsKidneyKnowledgeLamina PropriaLungMeasurementMeasuresMethodsMicroscopicMolecularMorbidity - disease rateMyosin Light Chain KinaseNeuraxisNutrientOrganPatch-Clamp TechniquesPathologistPathway interactionsPatientsProcessProteinsPublishingQualifyingRegulationReportingResearchResearch PersonnelResolutionRoleSkinSymptomsTherapeuticTight JunctionsTimeTrainingTumor Necrosis Factor-alphaVoltage-Clamp Technicsbasecytokinegastrointestinalimprovedinnovationintestinal epitheliumnovel strategiesoccludinpatch clamppublic health relevanceskillssmall moleculesubmicrontherapy development
项目摘要
DESCRIPTION (provided by applicant): Intestinal barrier function is reduced in inflammatory bowel disease (IBD) and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Published reports and my preliminary data, which assess the role of different inflammatory cytokines in the lamina propria of IBD patients, support the hypothesis that at least two mechanisms of tight junction barrier regulation are activated by inflammatory cytokines. TNF induces tight junction dysfunction via a mechanism involving occludin internalization that alters tight junction size selectivity and permits increased macromolecular flux. In contrast IL-13 activates a functionally distinct pathway involving expression of claudin proteins that affects ion selectivity but does not increase macromolecular flux. Despite advances in understanding the processes involved in cytokine-induced barrier regulation, the molecular events that define size- or ion-selective changes are unclear. This, in part, represents the technical obstacle posed by traditional time and spatially averaged measurements of barrier function. I hypothesize that the tight junction barrier is highly dynamic at the local, sub-micron level, and that regulation of paracellular flux occurs through modulation of opening and closing "events" involving more than one class of tight junction pore or other conductance pathway. Because the tight junction spans two cells, it has not been amenable to molecular and biophysical analyses and development of specific pharmacologic modulators, such as those that exist for transmembrane ion channels. In order to eliminate this gap in available methods and molecular understanding, I have developed a novel approach to analyze tight junction barrier function at the local sub-micron level, using a high resolution single electrode patch clamp technique. While this approach is extensively used in the study of transmembrane ion channels and transporters, it has not been applied to the study of tight junction function. My preliminary recordings using this approach show previously unrecognized barrier dynamics, and I hypothesize that this behavior underlies normal tight junction function as a selectively-permeable barrier and is also necessary for understanding the molecular mechanisms and basis for multiple pathways of barrier dysfunction in disease. These local measurements will be performed alongside traditional assays of tight junction function (Aim 1) to study tight junction dynamics at steady state (Aim 2) and after exposure to inflammatory cytokines IL-13 and TNF (Aim 3). The data will have significant positive effects on human health by improving the understanding of barrier function and dysfunction, which may provide better therapeutic approaches for intestinal disorders such as IBD, celiac disease, and infectious colitis. Furthermore, both the knowledge gained and the technical approaches developed will be easily adapted to the study of tight junctions in other organs, including integument, central nervous system, vasculature, lung, kidney, and skin, and, therefore, may have broad impact beyond gastrointestinal disease.
PUBLIC HEALTH RELEVANCE: Narrative Intestinal barrier function is reduced in inflammatory bowel disease and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Barrier dysfunction involves separate mechanisms for ionic and macromolecular flux, but the molecular basis for these different pathways is unclear. The research outlined will study these mechanisms using high resolution patch clamp recordings of tight junction barrier dynamics.
DESCRIPTION (provided by applicant): Intestinal barrier function is reduced in inflammatory bowel disease (IBD) and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Published reports and my preliminary data, which assess the role of different inflammatory cytokines in the lamina propria of IBD patients, support the hypothesis that at least two mechanisms of tight junction barrier regulation are activated by inflammatory cytokines. TNF induces tight junction dysfunction via a mechanism involving occludin internalization that alters tight junction size selectivity and permits increased macromolecular flux. In contrast IL-13 activates a functionally distinct pathway involving expression of claudin proteins that affects ion selectivity but does not increase macromolecular flux. Despite advances in understanding the processes involved in cytokine-induced barrier regulation, the molecular events that define size- or ion-selective changes are unclear. This, in part, represents the technical obstacle posed by traditional time and spatially averaged measurements of barrier function. I hypothesize that the tight junction barrier is highly dynamic at the local, sub-micron level, and that regulation of paracellular flux occurs through modulation of opening and closing "events" involving more than one class of tight junction pore or other conductance pathway. Because the tight junction spans two cells, it has not been amenable to molecular and biophysical analyses and development of specific pharmacologic modulators, such as those that exist for transmembrane ion channels. In order to eliminate this gap in available methods and molecular understanding, I have developed a novel approach to analyze tight junction barrier function at the local sub-micron level, using a high resolution single electrode patch clamp technique. While this approach is extensively used in the study of transmembrane ion channels and transporters, it has not been applied to the study of tight junction function. My preliminary recordings using this approach show previously unrecognized barrier dynamics, and I hypothesize that this behavior underlies normal tight junction function as a selectively-permeable barrier and is also necessary for understanding the molecular mechanisms and basis for multiple pathways of barrier dysfunction in disease. These local measurements will be performed alongside traditional assays of tight junction function (Aim 1) to study tight junction dynamics at steady state (Aim 2) and after exposure to inflammatory cytokines IL-13 and TNF (Aim 3). The data will have significant positive effects on human health by improving the understanding of barrier function and dysfunction, which may provide better therapeutic approaches for intestinal disorders such as IBD, celiac disease, and infectious colitis. Furthermore, both the knowledge gained and the technical approaches developed will be easily adapted to the study of tight junctions in other organs, including integument, central nervous system, vasculature, lung, kidney, and skin, and, therefore, may have broad impact beyond gastrointestinal disease.
PUBLIC HEALTH RELEVANCE: Narrative Intestinal barrier function is reduced in inflammatory bowel disease and other intestinal disorders. Alterations of tight junctions, which form the major paracellular barrier, contribute to barrier loss by allowing increased paracellular flux of ions and molecules. Barrier dysfunction involves separate mechanisms for ionic and macromolecular flux, but the molecular basis for these different pathways is unclear. The research outlined will study these mechanisms using high resolution patch clamp recordings of tight junction barrier dynamics.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Weber其他文献
Christopher Weber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Weber', 18)}}的其他基金
Mechanisms of tight junction pore and leak pathway regulation in intestinal mucos
肠粘膜紧密连接孔和渗漏途径的调节机制
- 批准号:
8881173 - 财政年份:2014
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of tight junction pore and leak pathway regulation in intestinal mucos
肠粘膜紧密连接孔和渗漏途径的调节机制
- 批准号:
8770614 - 财政年份:2014
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8076178 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8712475 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
7958930 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms and pathways of trans-tight junction conductance
跨密封连接电导的机制和途径
- 批准号:
8312730 - 财政年份:2010
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of epithelial barrier dysfunction mediated by inflammatory cytokines
炎症细胞因子介导的上皮屏障功能障碍机制
- 批准号:
7675967 - 财政年份:2008
- 资助金额:
$ 14.66万 - 项目类别:
Mechanisms of epithelial barrier dysfunction mediated by inflammatory cytokines
炎症细胞因子介导的上皮屏障功能障碍机制
- 批准号:
7539581 - 财政年份:2008
- 资助金额:
$ 14.66万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.66万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 14.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




