Multi-level Modular Agent-based Modeling for the Study of Childhood Obesity

用于儿童肥胖研究的基于多级模块化代理的建模

基本信息

  • 批准号:
    8129470
  • 负责人:
  • 金额:
    $ 28.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-21 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop and apply a novel modular agent-based modeling approach for the multilevel study of childhood obesity, with a focus on eating. The research envisioned here is anchored in the brain-to-society system (BtS) approach to the study of eating and obesity prevention in development by a trans-disciplinary team lead by principal investigator Dube, and includes experts from each of the fields most relevant to this proposal. Under the leadership of Co-I Hammond from the Brookings Institution, we propose to build upon agent-based modeling work that is both multi-disciplinary and multi-level, to develop a novel extension of the agent-based methodology-a "modular" approach that will allow separate consideration of each level of analysis, but importantly will permit straightforward integration of the "modules" to study multi-level feedbacks and interactions. The modular ABM will examine five levels of influence expected to modulate the complex biology/environment interactions influencing eating behaviors and body weight (BMI): (1) genetics (dopaminergic gene systems DRD2 DRD4); (2) neurobiology (dopamine-striatal and executive control functions); (3) psychological predisposition (restraint/ disinhibition and sensitivity to reward); (4) family (child's attachment style and mother anxiety/depression during pregnancy/early childhood, environmental adversity, food security and poverty); (5) social (mother's social norms and social capital, home food environment). ABM-generated synthetic data will be compared to existing longitudinal empirical data from the MAVAN cohort (lead by Co-I Robert Levitan and Michael Meaney), a sample of mothers and their children observed in a longitudinal within-subject design from the time of pregnancy and birth to examine gene-environment interactions and neurodevelopment. The specific aims of the research proposed here, over the course of the 5- year project, are: (1) to construct separate agent-based "modular" models for each of five levels of analysis relevant to childhood obesity-genetic, neuro-cognitive, psychological, family, and social/environmental--using early childhood data (0-4 years), (2) to integrate multiple modules of the ABM and explore feedback loops between levels, (3) to test the predictive ability of the modular ABM for the key transitional period of 5-7 years, and (4) to provide further validation of the modular ABM models using functional data analysis. The complete model will enable subsequent exploration of potential policy design of interventions, as well as projection of the implications of identified trends. The modular ABM methodology developed in this project would also be of use for the study of other, similarly complex problems. In brief, then, this project will both develop a novel multilevel methodology (modular agent-based computational modeling) and apply it to the study of childhood obesity to improve our understanding of the multilevel determinants of childhood obesity and help design more effective multilevel interventions that consider the range of biological, family, community, socio-cultural, environmental, policy, and macro-level economic factors that influence diet and physical activity in children. PUBLIC HEALTH RELEVANCE: This project will develop a novel multi-level methodology (modular agent-based computational modeling; ABM) and apply it to the study of childhood obesity to improve our understanding of the multilevel determinants of childhood obesity, with a focus on eating. ABM-generated synthetic data will be compared to existing longitudinal empirical data from a cohort of low socio-economic status mothers and their children observed in a longitudinal within-subject design from the time of pregnancy and birth to examine gene-environment interactions and neurodevelopment. The outcome will help design more effective multilevel interventions that consider the range of biological, family, community, socio-cultural, environmental, policy, and macro-level economic factors that influence diet and body weight in children.
描述(由申请人提供):我们建议开发和应用一种新的基于模块化代理的建模方法,用于儿童肥胖的多层次研究,重点是饮食。这里设想的研究是由首席研究员杜贝领导的跨学科团队在发展中研究饮食和肥胖预防的脑-社会系统(BtS)方法中进行的,其中包括与该提案最相关的每个领域的专家。在来自布鲁金斯研究所的Co-I哈蒙德的领导下,我们建议建立基于代理的建模工作,这是多学科和多层次的,开发一种新的扩展基于代理的方法,一种“模块化”的方法,将允许单独考虑每个层次的分析,但重要的是将允许直接集成的“模块”,以研究多层次的反馈和相互作用。模块化ABM将检查预期调节影响饮食行为和体重(BMI)的复杂生物学/环境相互作用的五个影响水平:(1)遗传学(多巴胺能基因系统DRD 2 DRD 4);(2)神经生物学(多巴胺-纹状体和执行控制功能);(3)心理倾向(抑制/去抑制和奖励敏感性);(4)家庭(儿童的依恋方式和母亲在怀孕/幼儿期的焦虑/抑郁、环境逆境、粮食安全和贫困);(5)社会性(母亲的社会规范和社会资本、家庭饮食环境)。ABM生成的合成数据将与来自MAVAN队列(由Co-I Robert Levitan和Michael Meaney领导)的现有纵向经验数据进行比较,MAVAN队列是从怀孕和出生时开始在纵向受试者内设计中观察的母亲及其子女的样本,以检查基因-环境相互作用和神经发育。在五年项目期间,这里提出的研究的具体目标是:(1)利用儿童早期数据,为与儿童肥胖相关的五个分析层次(遗传、神经认知、心理、家庭和社会/环境)中的每一个层次构建单独的基于主体的“模块”模型(0-4年),(2)整合ABM的多个模块,探索各级之间的反馈回路,(3)测试模块ABM对5-7年关键过渡期的预测能力,以及(4)使用功能数据分析提供模块化ABM模型的进一步验证。完整的模型将使以后能够探讨干预措施的潜在政策设计,并预测已确定趋势的影响。在这个项目中开发的模块化反弹道导弹方法也可用于研究其他类似的复杂问题。简而言之,该项目将开发一种新型的多层次方法(基于模块化代理的计算建模),并将其应用于儿童肥胖的研究,以提高我们对儿童肥胖的多层次决定因素的理解,并帮助设计更有效的多层次干预措施,考虑生物,家庭,社区,社会文化,环境,政策,以及影响儿童饮食和体育活动的宏观经济因素。 公共卫生关系:该项目将开发一种新的多层次方法(基于模块化代理的计算建模; ABM),并将其应用于儿童肥胖的研究,以提高我们对儿童肥胖的多层次决定因素的理解,重点是饮食。ABM生成的合成数据将与来自低社会经济地位母亲及其子女队列的现有纵向经验数据进行比较,这些母亲及其子女从怀孕和出生时起在纵向受试者内设计中观察,以检查基因-环境相互作用和神经发育。研究结果将有助于设计更有效的多层次干预措施,考虑影响儿童饮食和体重的生物、家庭、社区、社会文化、环境、政策和宏观经济因素。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurette Dube其他文献

Laurette Dube的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laurette Dube', 18)}}的其他基金

Multi-level Modular Agent-based Modeling for the Study of Childhood Obesity
用于儿童肥胖研究的基于多级模块化代理的建模
  • 批准号:
    7935280
  • 财政年份:
    2009
  • 资助金额:
    $ 28.82万
  • 项目类别:
Multi-level Modular Agent-based Modeling for the Study of Childhood Obesity
用于儿童肥胖研究的基于多级模块化代理的建模
  • 批准号:
    7743514
  • 财政年份:
    2009
  • 资助金额:
    $ 28.82万
  • 项目类别:
Multi-level Modular Agent-based Modeling for the Study of Childhood Obesity
用于儿童肥胖研究的基于多级模块化代理的建模
  • 批准号:
    8538928
  • 财政年份:
    2009
  • 资助金额:
    $ 28.82万
  • 项目类别:
Multi-level Modular Agent-based Modeling for the Study of Childhood Obesity
用于儿童肥胖研究的基于多级模块化代理的建模
  • 批准号:
    8320713
  • 财政年份:
    2009
  • 资助金额:
    $ 28.82万
  • 项目类别:

相似海外基金

Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 28.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neuroanatomical pathways of the mouse olfactory tubercle and odor-induced adaptive behaviors
小鼠嗅结节的神经解剖通路和气味诱导的适应性行为
  • 批准号:
    16K18377
  • 财政年份:
    2016
  • 资助金额:
    $ 28.82万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Effects of the Video Self-Modeling on Adaptive Behaviors of Students with Autism Spectrum Disorders
视频自我塑造对自闭症谱系障碍学生适应性行为的影响
  • 批准号:
    22531069
  • 财政年份:
    2010
  • 资助金额:
    $ 28.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
BIC: EMT: Cooperative and Adaptive Behaviors By Molecular Robots
BIC:EMT:分子机器人的合作和适应性行为
  • 批准号:
    0523317
  • 财政年份:
    2005
  • 资助金额:
    $ 28.82万
  • 项目类别:
    Continuing Grant
Adaptive behaviors emerged by functional structures in interaction networks
交互网络中功能结构出现的适应性行为
  • 批准号:
    17075007
  • 财政年份:
    2005
  • 资助金额:
    $ 28.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
  • 批准号:
    3025358
  • 财政年份:
    1986
  • 资助金额:
    $ 28.82万
  • 项目类别:
A STUDY OF THE ADAPTIVE BEHAVIORS OF DELINQUENT YOUTH
青少年犯罪适应性行为研究
  • 批准号:
    3025357
  • 财政年份:
    1984
  • 资助金额:
    $ 28.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了