Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
基本信息
- 批准号:7878894
- 负责人:
- 金额:$ 133.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-03 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:ArchivesAreaCancer BiologyCancer Death RatesCardiovascular DiseasesCharacteristicsClinicalClinical DataCommon NeoplasmCommunitiesComplexComputational BiologyCoupledDNADataData SetData SourcesDiseaseDrug Delivery SystemsEarly DiagnosisEarly treatmentEducationEducation and OutreachEnvironmentFellowship ProgramFred Hutchinson Cancer Research CenterFunctional disorderFutureGenerationsGenetic TranscriptionGenomicsGoalsGrantIndividualInstitutesLinkMalignant NeoplasmsMedical ResearchMentorsMentorshipMessenger RNAMeta-AnalysisMethodsMissionModelingMolecularNetherlandsNormal tissue morphologyOutcomePatientsPostdoctoral FellowPredictive ValueProcessProspective StudiesResearch PersonnelSamplingScientistSeriesSiteSourceSystemSystems BiologyTechnologyTestingTrainingValidationVariantVisionWorkcancer therapycohortexperiencehuman diseasemathematical modelmodel developmentmolecular phenotypenetwork modelsoncologypredictive modelingprogramsresearch studytooltraittumor
项目摘要
DESCRIPTION (provided by applicant): Our proposal for a Sage CCSB, "Integrating cancer datasets for predictive model development and training," has as its central scientific theme the generation of a set of probabilistic causal models for a series of tumor types from numerous collaborators. By selecting sample sets with different clinical outcomes, the resultant Sage models will have applications impacting cancer biology, early intervention, and cancer treatments. The Sage CCSB leverages the extensive work done at Rosetta/Merck on predictive models in numerous disease areas, which has been gifted to a new nonprofit medical research organization, "Sage Bionetworks." The Sage CCSB operational model contains a core platform of curated data, mathematical models and experienced investigators mentoring postdoctoral trainees/fellows. The data comes from collaborators and consists of DNA variation data, RNA expression data and clinical outcomes. The trainees will collate and annotate the genotypic, intermediate molecular phenotype, and clinical end point data from at least five different tumor-type cohorts and develop models that can predict potential new cancer targets, markers for early detection, and clinical outcomes. They will do externships at other sites (CCSBs), where they will build additional models of their data and facilitate reciprocal exchange of ideas. The trainees will delineate specifications for tools that will make the access to these models more scalable. Validation of their hypotheses will be performed at the Fred Hutchinson Cancer Research Center and the Netherlands Cancer Institute. This post-doctoral program will provide a unique training and mentorship environment in cancer systems biology and facilitate interactions between CCSBs and NCI.
描述(由申请人提供):我们对Sage CCSB的提案,“整合用于预测模型开发和培训的癌症数据集”,其核心科学主题是来自众多合作者的一系列肿瘤类型的一组概率因果模型的生成。通过选择具有不同临床结果的样本集,Sage模型将具有影响癌症生物学、早期干预和癌症治疗的应用。Sage CCSB利用了Rosetta/默克在许多疾病领域的预测模型方面所做的大量工作,这些工作已被捐赠给一个新的非营利性医学研究组织“Sage Bionetworks”。Sage CCSB运营模式包含一个核心平台,由精心策划的数据、数学模型和经验丰富的研究人员指导博士后学员/研究员。这些数据来自合作者,包括DNA变异数据、RNA表达数据和临床结果。学员将整理和注释来自至少五个不同肿瘤类型队列的基因型、中间分子表型和临床终点数据,并开发可以预测潜在新癌症靶点、早期检测标记和临床结果的模型。他们将在其他网站(CCSBs)进行实习,在那里他们将为自己的数据建立额外的模型,并促进思想的相互交流。受训者将描述工具的规范,这些工具将使对这些模型的访问更具可伸缩性。他们的假设将在弗雷德哈钦森癌症研究中心和荷兰癌症研究所进行验证。该博士后项目将为癌症系统生物学提供独特的培训和指导环境,并促进CCSBs与NCI之间的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Henry Friend其他文献
Stephen Henry Friend的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Henry Friend', 18)}}的其他基金
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8567621 - 财政年份:2013
- 资助金额:
$ 133.89万 - 项目类别:
1/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
精神分裂症及相关疾病多维数据的 1/3 网络
- 批准号:
8305366 - 财政年份:2012
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8340528 - 财政年份:2011
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8080859 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8448541 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8292230 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8812126 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8555161 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
Integrating cancer datasets for predictive model development and training
整合癌症数据集以进行预测模型开发和训练
- 批准号:
8896931 - 财政年份:2010
- 资助金额:
$ 133.89万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 133.89万 - 项目类别:
Standard Grant














{{item.name}}会员




