Detecting deviations in clinical care in ICU data streams

检测 ICU 数据流中临床护理的偏差

基本信息

  • 批准号:
    8098786
  • 负责人:
  • 金额:
    $ 49.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Timely detection of severe patient conditions or concerning events and their mitigation remains an important problem in clinical practice. This is especially true in the critically ill patient [1]. Typical computer-based detection methods developed for this purpose rely on the use of clinical knowledge, such as expert-derived rules, that are incorporated into monitoring and alerting systems. However, it is often time-consuming, costly, and difficult to extract and implement such knowledge in existing monitoring systems. The research work in this proposal offers computational, rather than expert-based, solutions that build alert systems from data stored in patient data repositories, such as electronic medical records. Briefly, our approach uses advanced machine learning algorithms to identify unusual clinical management patterns in individual patients, relative to patterns associated with comparable patients, and raises an alert signaling this discrepancy. Our preliminary studies provide support that such deviations often indicate clinically important events for which it is worthwhile to raise an alert. We propose an evaluation based on physician assessment of alerts that are generated from a retrospective set of intensive-care unit (ICU) patient cases. The project investigators comprise a multidisciplinary team with expertise in critical care medicine, computer science, biomedical informatics, statistical machine learning, knowledge based systems, and clinical data repositories. PUBLIC HEALTH RELEVANCE: There remain numerous opportunities to reduce medical errors in critical care by sending computer-based reminders and alerts to clinicians. This project uses past patient data, which is stored in electronic form, and machine-learning methods to help develop and refine computer-based alerts to improve healthcare quality and reduce costs.
描述(由申请人提供):及时检测严重患者状况或相关事件及其缓解仍然是临床实践中的一个重要问题。这在重症患者中尤为明显[1]。为此目的开发的典型的基于计算机的检测方法依赖于临床知识的使用,例如专家导出的规则,这些规则被并入监测和警报系统中。然而,在现有的监控系统中提取和实施此类知识通常耗时、成本高且困难。该提案中的研究工作提供了计算而不是基于专家的解决方案,这些解决方案可以从存储在患者数据存储库中的数据(如电子病历)中构建警报系统。简而言之,我们的方法使用先进的机器学习算法来识别个体患者中不寻常的临床管理模式,相对于与可比患者相关的模式,并发出警报,表明这种差异。我们的初步研究提供了支持,这种偏离往往表明临床上重要的事件,这是值得提高警惕。我们提出了一个评估的基础上,从一组回顾性的重症监护病房(ICU)患者的情况下产生的警报的医生评估。项目研究人员组成了一个多学科团队,拥有重症监护医学,计算机科学,生物医学信息学,统计机器学习,基于知识的系统和临床数据存储库的专业知识。 公共卫生相关性:通过向临床医生发送基于计算机的提醒和警报,仍然有许多机会减少重症监护中的医疗错误。该项目使用以电子形式存储的过去患者数据和机器学习方法来帮助开发和改进基于计算机的警报,以提高医疗质量并降低成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gilles Clermont其他文献

Gilles Clermont的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gilles Clermont', 18)}}的其他基金

Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
  • 批准号:
    10705150
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
  • 批准号:
    10521549
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
  • 批准号:
    10630230
  • 财政年份:
    2021
  • 资助金额:
    $ 49.85万
  • 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
  • 批准号:
    10371943
  • 财政年份:
    2021
  • 资助金额:
    $ 49.85万
  • 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
  • 批准号:
    10494259
  • 财政年份:
    2021
  • 资助金额:
    $ 49.85万
  • 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
  • 批准号:
    9307982
  • 财政年份:
    2016
  • 资助金额:
    $ 49.85万
  • 项目类别:
Model-Based Decisions in Sepsis
脓毒症基于模型的决策
  • 批准号:
    9249074
  • 财政年份:
    2014
  • 资助金额:
    $ 49.85万
  • 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
  • 批准号:
    8443055
  • 财政年份:
    2012
  • 资助金额:
    $ 49.85万
  • 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
  • 批准号:
    8176486
  • 财政年份:
    2011
  • 资助金额:
    $ 49.85万
  • 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
  • 批准号:
    8309053
  • 财政年份:
    2011
  • 资助金额:
    $ 49.85万
  • 项目类别:

相似海外基金

EPIphANy (Evaluation of Pharmacological Interactions with Anticoagulants in caNcer patients) program - prostate cancer cohort
EPIPHANy(癌症患者抗凝药理相互作用的评估)计划 - 前列腺癌队列
  • 批准号:
    479295
  • 财政年份:
    2023
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Operating Grants
Inhibitors of Human Factor XIIIa as New Anticoagulants
人类因子 XIIIa 抑制剂作为新型抗凝剂
  • 批准号:
    10629057
  • 财政年份:
    2023
  • 资助金额:
    $ 49.85万
  • 项目类别:
Establishment of comprehensive monitoring of direct oral anticoagulants (DOACs) for clinical application
建立临床应用直接口服抗凝剂(DOAC)综合监测体系
  • 批准号:
    23K06906
  • 财政年份:
    2023
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactions of Enzyme-Inducing Antiepileptic Drugs with Direct-Acting Oral Anticoagulants: Risk of Thromboembolic Events
酶诱导抗癫痫药物与直接作用口服抗凝剂的相互作用:血栓栓塞事件的风险
  • 批准号:
    10605482
  • 财政年份:
    2023
  • 资助金额:
    $ 49.85万
  • 项目类别:
The Comparative Effectiveness and Safety of Oral Anticoagulants in Patients with Cirrhosis and Atrial Fibrillation
口服抗凝药对肝硬化合并心房颤动患者的有效性和安全性比较
  • 批准号:
    10559071
  • 财政年份:
    2023
  • 资助金额:
    $ 49.85万
  • 项目类别:
Search for indicators of blood levels of directly inhibitory oral anticoagulants in coagulation tests using artificial intelligence
使用人工智能在凝血测试中搜索直接抑制性口服抗凝剂的血液水平指标
  • 批准号:
    22K07388
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bleeding on Direct Oral Anticoagulants: Identification of Genetic Risk Factors and a Polygenic Predictive Score in Patients with Atrial Fibrillation
直接口服抗凝剂导致的出血:房颤患者遗传风险因素的鉴定和多基因预测评分
  • 批准号:
    10536789
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
Study on proper use of oral anticoagulants combined with 5-fluorouracil
口服抗凝药联合5-氟尿嘧啶正确使用研究
  • 批准号:
    22K06743
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Benchmarking a point-of-care test kit for detection of direct-oral anticoagulants
用于检测直接口服抗凝剂的即时检测试剂盒的基准测试
  • 批准号:
    461790
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Operating Grants
Direct oral anticoagulants and the risk of colorectal and pancreatic cancers: a population-based cohort study.
直接口服抗凝剂与结直肠癌和胰腺癌的风险:一项基于人群的队列研究。
  • 批准号:
    474475
  • 财政年份:
    2022
  • 资助金额:
    $ 49.85万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了