Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
基本信息
- 批准号:10705150
- 负责人:
- 金额:$ 63.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaAutomobile DrivingBehaviorCaregiversCause of DeathClinicalClinical ManagementClinical TrialsComplicationComputerized Medical RecordComputersConduct Clinical TrialsDataDecision Support ModelDevelopmentEvaluationEvaluation StudiesEventFundingGenerationsGoalsGrowthHealthcareHumanHybridsImmunosuppressive AgentsImpact evaluationIndividualInformation ResourcesInpatientsIntensive Care UnitsInterventionKnowledgeLearningLiteratureMachine LearningMedical ErrorsMethodologyMethodsModelingMonitorOperative Surgical ProceduresOutcomeOutpatientsOutputPatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPilot ProjectsPlayPractice ManagementProcessProductionResearchResolutionResourcesRoleRunningSystemTacrolimusTimeTrainingWorkadjudicationclinical careclinical practicedata archivedata integrationelectronic medical record systemhuman-in-the-loopimprovedknowledge baseknowledgebaseliver transplantationmachine learning modelmachine learning predictionprocess improvementprogramsprospectivesecondary endpointtool
项目摘要
Abstract
Medical errors are more broadly defined as adverse clinical events that are preventable. Studies
show that medical errors remain one of the key challenges of health care and recent literature
ranks medical errors as one of the leading causes of death in the US. The urgency and the
scope of the problem prompt the development of solutions aimed to aid clinicians in reducing
such errors. Computer-based monitoring and alerting systems that rely on information in
electronic medical records (EMRs) play a key role in this effort. In the previous funding cycles,
our group has been developing an outlier-based model-driven alerting methodology with
significant potential to reduce medical errors. The method uses retrospective data to build
machine learning models that predict physician actions from a broad representation of patient
states. An alert is raised if a management action (or its omission) for the current patient deviates
significantly from predicted management actions for similar patients. As an example of an actual
alert generated by the system, consider a patient who has recently undergone a liver transplant
and receives tacrolimus as immunosuppressive agent. The patient suffers a complication and
undergoes corrective surgery; however, inadvertently, tacrolimus is not reordered following the
surgery. Since not receiving the expected medication represents a deviation from predicted
management practice in similar patients, it is a clinical outlier. Raising an alert to reorder the
medication is therefore appropriate. Our current alerting system is silently deployed on the
production electronic medical record system at UPMC and supports alerting in real-time.
The current proposal takes the research program in a bold new direction. Alerting models will be
enhanced using a variety of tools, including automatic evaluation of performance and the
inclusion of an adaptive ICU-specific knowledge-base in addition to multi-domain, multi-
resolution features derived from the EMR. Human experts will play a major role in determining
appropriateness and usefulness of alerts when generated in real-time, contribute to the dynamic
growth of the knowledge base, and evaluate the quality of the explanations provided for the
alerts. Finally, the alerting system will be deployed across 12 ICUs in a step-wedge clinical trial
to determine whether EHR-based alerting, when revealed to clinicians, modifies the rate and
timing of their actions. Secondary end-points will include alert performance metrics, process-
related outcomes, and patient-centered outcomes.
摘要
医疗差错被更广泛地定义为可预防的不良临床事件。研究
表明医疗差错仍然是卫生保健和最近文献的主要挑战之一,
将医疗事故列为美国死亡的主要原因之一。紧迫性和
问题的范围促使开发旨在帮助临床医生减少
这样的错误。基于计算机的监测和警报系统,
电子医疗记录(EMR)在这方面发挥着关键作用。在以往的供资周期中,
我们小组一直在开发一种基于离群值的模型驱动警报方法,
减少医疗差错的巨大潜力。该方法使用回顾性数据来构建
机器学习模型,从患者的广泛代表性预测医生的行动
states.如果当前患者的管理措施(或其遗漏)偏离
这与对类似患者的预测管理措施有显著差异。作为一个实际的例子
系统生成的警报,考虑最近接受肝移植的患者
并接受他克莫司作为免疫抑制剂。病人有并发症,
接受矫正手术;然而,无意中,他克莫司没有在
手术由于未接受预期药物治疗代表偏离预期
在类似患者的管理实践中,它是一个临床离群值。引发警报以重新排序
因此,药物是适当的。我们当前的警报系统是静默部署在
UPMC的生产电子病历系统,并支持实时报警。
目前的提案将研究计划带到了一个大胆的新方向。警报模型将
使用各种工具进行增强,包括性能的自动评估和
除了多领域、多领域之外,还包含自适应ICU特定知识库
从EMR获得的分辨率特征。人类专家将在决定
实时生成的警报的适当性和有用性有助于动态
知识库的增长,并评估为知识库提供的解释的质量。
警报.最后,警报系统将在12个ICU中进行逐步楔形临床试验
以确定基于EHR的警报在向临床医生披露时是否会改变发生率,
他们行动的时机。次要终点将包括警报性能指标、流程-
相关结果和以患者为中心的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilles Clermont其他文献
Gilles Clermont的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilles Clermont', 18)}}的其他基金
Learning alerting models for clinical care from EMR data and human knowledge
从 EMR 数据和人类知识中学习临床护理警报模型
- 批准号:
10521549 - 财政年份:2022
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10630230 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10371943 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
AI driven acute renal replacement therapy - (AID-ART)
AI 驱动的急性肾脏替代疗法 - (AID-ART)
- 批准号:
10494259 - 财政年份:2021
- 资助金额:
$ 63.44万 - 项目类别:
Endotypes of thrombocytopenia in the critically ill
危重症患者血小板减少症的内型
- 批准号:
9307982 - 财政年份:2016
- 资助金额:
$ 63.44万 - 项目类别:
Predictive Biosignatures for Complicated Novel H1N1 Influenza
复杂的新型 H1N1 流感的预测生物特征
- 批准号:
8443055 - 财政年份:2012
- 资助金额:
$ 63.44万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8176486 - 财政年份:2011
- 资助金额:
$ 63.44万 - 项目类别:
Model-based decision support for tight glucose control without hypoglycemia
基于模型的决策支持,可严格控制血糖而不会发生低血糖
- 批准号:
8309053 - 财政年份:2011
- 资助金额:
$ 63.44万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 63.44万 - 项目类别:
Standard Grant