High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
基本信息
- 批准号:8065355
- 负责人:
- 金额:$ 3.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2013-06-14
- 项目状态:已结题
- 来源:
- 关键词:AnimalsArchitectureBrainCerebrumComplementDecision MakingDiseaseEnvironmentGeneticHealthImageImaging TechniquesIndividualLaboratoriesLearningLong-Term EffectsMammalsMapsMeasuresMemoryModificationMolecularMotorMusNeocortexPerceptionPerceptual learningPopulationProteinsPyramidal CellsResolutionRodentSensoryStructureSynapsesTimeTissuesVibrissaeWorkbarrel cortexhigh throughput analysisin vivoneocorticalnervous system disorderoperationsomatosensorystellate celltomographytool
项目摘要
Plasticity of connections within the neocortical microcircuit is thought to be the substrate for perceptual learning and memory. Mouse whisker barrel cortex offers many unique experimental advantages for the study of neocortical plasticity because of an advantageous sensory and motor periphery and because of the obviousness and accessibility of its columnar architecture, which is highly similar to the architecture of all other regions of neocortex in rodents and other mammals. The mouse in particular offers special advantages for imaging studies because of its small size and the availability of increasingly powerful genetics tools. It is now widely expected that work on the plasticity of mouse barrel cortex will provide for the next few years one of the most promising avenues toward a general cellular and molecular understanding of neocortical learning and memory mechanisms in health and disease.
Array tomography (ATom) (Micheva and Smith 2007) is a groundbreaking new imaging technique developed by the Smith lab, which for the first time allows high-throughput analysis of the molecular architecture of tissue at the single-synapse level. This capacity for high- throughput single-synapse analysis provides an unprecedented opportunity to measure neocortical synaptic changes on a comprehensive and panoramic scale and at a level of detail and quantitative reliability far beyond previous experimental approaches. We will use high- throughput ATom to explore the modification of the synaptic microcircuitry of the mouse whisker barrel by altered sensory stimulation, identify specific synapse populations most subject to such modification and characterize corresponding changes in synapse protein composition and structure. This unique new perspective on changes in the molecular architectures of individual synapses is expected to provide an extraordinarily valuable complement to in vivo studies of whisker barrel plasticity being carried out in many other laboratories.
Specific Aim 1: To define the laminar distributions of distinct synaptic populations within a barrel column and assess the variability of this synaptic architecture between columns and animals.
Specific Aim 2: To characterize the effect of long term principal whisker stimulation on the laminar distributions of distinct synapse populations within the barrel column microcircuit.
Specific Aim 3: To compare the plasticity of distinct populations of synapses onto layer 4 spiny stellate cells and layer 5 pyramidal cells.
新皮层微回路内连接的可塑性被认为是感知学习和记忆的基础。小鼠须桶皮质为新皮质可塑性的研究提供了许多独特的实验优势,因为它具有有利的感觉和运动外围,并且因为其柱状结构的明显性和可访问性,这与啮齿动物和其他哺乳动物的新皮质的所有其他区域的结构高度相似。特别是小鼠,由于其体积小和日益强大的遗传学工具的可用性,为成像研究提供了特殊的优势。现在人们普遍预计,在未来几年内,对小鼠桶状皮层可塑性的研究将为健康和疾病中新皮层学习和记忆机制的一般细胞和分子理解提供最有前途的途径之一。
阵列断层扫描(ATom)(Micheva和Smith 2007)是由Smith实验室开发的一种开创性的新成像技术,首次允许在单突触水平上对组织的分子结构进行高通量分析。这种高通量单突触分析的能力提供了前所未有的机会,以全面和全景的规模,并在细节和定量可靠性远远超过以前的实验方法的水平上测量新皮层突触的变化。我们将使用高通量ATom来探索通过改变感觉刺激对小鼠须桶的突触微电路的修饰,鉴定最易受到这种修饰的特定突触群体,并表征突触蛋白组成和结构的相应变化。这种独特的新的角度在个别突触的分子结构的变化,预计将提供一个非常有价值的补充,在体内研究的须桶可塑性正在进行的许多其他实验室。
具体目标1:确定不同突触群体在桶柱内的层状分布,并评估这种突触结构在柱和动物之间的变异性。
具体目标二:描述长时程主须刺激对桶柱微电路内不同突触群的层状分布的影响。
具体目标3:比较第4层棘状星状细胞和第5层锥体细胞上不同突触群体的可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Collins Weiler其他文献
Nicholas Collins Weiler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Collins Weiler', 18)}}的其他基金
High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
- 批准号:
7909779 - 财政年份:2010
- 资助金额:
$ 3.91万 - 项目类别:
High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
- 批准号:
8261943 - 财政年份:2010
- 资助金额:
$ 3.91万 - 项目类别:
相似海外基金
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 3.91万 - 项目类别:
Standard Grant
Genetic architecture of brain evolution during ecological divergence
生态分化期间大脑进化的遗传结构
- 批准号:
NE/W010011/1 - 财政年份:2023
- 资助金额:
$ 3.91万 - 项目类别:
Research Grant
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2022
- 资助金额:
$ 3.91万 - 项目类别:
Discovery Grants Program - Individual
CCF: Small: Paradox and Brain-inspired Computer Architecture
CCF:小型:悖论和受大脑启发的计算机架构
- 批准号:
2204780 - 财政年份:2022
- 资助金额:
$ 3.91万 - 项目类别:
Standard Grant
Analysis of The Role of Network Architecture and Stimuli Properties in The Brain Functional Control
网络架构和刺激特性在大脑功能控制中的作用分析
- 批准号:
572676-2022 - 财政年份:2022
- 资助金额:
$ 3.91万 - 项目类别:
University Undergraduate Student Research Awards
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
- 批准号:
10503462 - 财政年份:2022
- 资助金额:
$ 3.91万 - 项目类别:
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
Discovery Grants Program - Individual
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
How the 3D architecture of the brain shapes cancer cell fate decisions
大脑的 3D 结构如何影响癌细胞的命运决定
- 批准号:
10245406 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
The genetic architecture and functional role of the mitochondrial transcriptome in the Human Brain
人脑线粒体转录组的遗传结构和功能作用
- 批准号:
2546794 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
Studentship