High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
基本信息
- 批准号:8261943
- 负责人:
- 金额:$ 3.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2013-06-14
- 项目状态:已结题
- 来源:
- 关键词:AnimalsArchitectureBrainCerebrumComplementDecision MakingDiseaseEnvironmentGeneticHealthImageImaging TechniquesIndividualLaboratoriesLearningLong-Term EffectsMammalsMapsMeasuresMemoryModificationMolecularMotorMusNeocortexPerceptionPerceptual learningPopulationProteinsPyramidal CellsResolutionRodentSensoryStructureSynapsesTimeTissuesVibrissaeWorkbarrel cortexhigh throughput analysisin vivoneocorticalnervous system disorderoperationsomatosensorystellate celltomographytool
项目摘要
Plasticity of connections within the neocortical microcircuit is thought to be the substrate for perceptual learning and memory. Mouse whisker barrel cortex offers many unique experimental advantages for the study of neocortical plasticity because of an advantageous sensory and motor periphery and because of the obviousness and accessibility of its columnar architecture, which is highly similar to the architecture of all other regions of neocortex in rodents and other mammals. The mouse in particular offers special advantages for imaging studies because of its small size and the availability of increasingly powerful genetics tools. It is now widely expected that work on the plasticity of mouse barrel cortex will provide for the next few years one of the most promising avenues toward a general cellular and molecular understanding of neocortical learning and memory mechanisms in health and disease.
Array tomography (ATom) (Micheva and Smith 2007) is a groundbreaking new imaging technique developed by the Smith lab, which for the first time allows high-throughput analysis of the molecular architecture of tissue at the single-synapse level. This capacity for high- throughput single-synapse analysis provides an unprecedented opportunity to measure neocortical synaptic changes on a comprehensive and panoramic scale and at a level of detail and quantitative reliability far beyond previous experimental approaches. We will use high- throughput ATom to explore the modification of the synaptic microcircuitry of the mouse whisker barrel by altered sensory stimulation, identify specific synapse populations most subject to such modification and characterize corresponding changes in synapse protein composition and structure. This unique new perspective on changes in the molecular architectures of individual synapses is expected to provide an extraordinarily valuable complement to in vivo studies of whisker barrel plasticity being carried out in many other laboratories.
Specific Aim 1: To define the laminar distributions of distinct synaptic populations within a barrel column and assess the variability of this synaptic architecture between columns and animals.
Specific Aim 2: To characterize the effect of long term principal whisker stimulation on the laminar distributions of distinct synapse populations within the barrel column microcircuit.
Specific Aim 3: To compare the plasticity of distinct populations of synapses onto layer 4 spiny stellate cells and layer 5 pyramidal cells.
新皮质微电路内连接的可塑性被认为是知觉学习和记忆的底物。小鼠须桶皮质因其优越的感觉和运动外周,以及其柱状结构的显着性和可达性,为新皮质可塑性的研究提供了许多独特的实验优势,这与啮齿动物和其他哺乳动物的新皮质的所有其他区域的结构高度相似。尤其是老鼠,因为它的体积小,而且可以获得越来越强大的遗传学工具,所以在成像研究中具有特殊的优势。目前,人们普遍预计,在未来几年内,对小鼠桶状皮质可塑性的研究将为全面了解健康和疾病中新皮质的学习和记忆机制提供最有希望的细胞和分子途径之一。
阵列断层摄影术(ATOM)(Micheva和Smith 2007)是史密斯实验室开发的一项突破性的新成像技术,它首次允许在单个突触水平上高通量分析组织的分子结构。这种高通量的单突触分析能力提供了一个前所未有的机会,可以在全面和全景的范围内,以远远超过以往实验方法的详细程度和定量可靠性来测量新皮质突触的变化。我们将使用高通量原子来探索改变感觉刺激对小鼠胡须桶突触微电路的修改,识别最容易受到这种修改的特定突触群体,并表征突触蛋白质组成和结构的相应变化。这一关于单个突触分子结构变化的独特新视角有望为许多其他实验室正在进行的胡须桶可塑性体内研究提供非常有价值的补充。
具体目标1:确定不同突触群体在桶状柱内的层状分布,并评估这种突触结构在柱和动物之间的可变性。
具体目标2:描述长期主须刺激对桶状柱微电路内不同突触群体的层状分布的影响。
具体目标3:比较不同突触群体在第4层棘状星状细胞和第5层锥体细胞上的可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Collins Weiler其他文献
Nicholas Collins Weiler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Collins Weiler', 18)}}的其他基金
High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
- 批准号:
7909779 - 财政年份:2010
- 资助金额:
$ 3.18万 - 项目类别:
High-Throughput Analysis of Synaptic Diversity and Plasticity in Mouse Barrel Cor
小鼠 Barrel Cor 突触多样性和可塑性的高通量分析
- 批准号:
8065355 - 财政年份:2010
- 资助金额:
$ 3.18万 - 项目类别:
相似海外基金
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
Standard Grant
Genetic architecture of brain evolution during ecological divergence
生态分化期间大脑进化的遗传结构
- 批准号:
NE/W010011/1 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
Research Grant
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2022
- 资助金额:
$ 3.18万 - 项目类别:
Discovery Grants Program - Individual
Analysis of The Role of Network Architecture and Stimuli Properties in The Brain Functional Control
网络架构和刺激特性在大脑功能控制中的作用分析
- 批准号:
572676-2022 - 财政年份:2022
- 资助金额:
$ 3.18万 - 项目类别:
University Undergraduate Student Research Awards
CCF: Small: Paradox and Brain-inspired Computer Architecture
CCF:小型:悖论和受大脑启发的计算机架构
- 批准号:
2204780 - 财政年份:2022
- 资助金额:
$ 3.18万 - 项目类别:
Standard Grant
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
- 批准号:
10503462 - 财政年份:2022
- 资助金额:
$ 3.18万 - 项目类别:
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2021
- 资助金额:
$ 3.18万 - 项目类别:
Discovery Grants Program - Individual
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 3.18万 - 项目类别:
How the 3D architecture of the brain shapes cancer cell fate decisions
大脑的 3D 结构如何影响癌细胞的命运决定
- 批准号:
10245406 - 财政年份:2021
- 资助金额:
$ 3.18万 - 项目类别:
The genetic architecture and functional role of the mitochondrial transcriptome in the Human Brain
人脑线粒体转录组的遗传结构和功能作用
- 批准号:
2546794 - 财政年份:2021
- 资助金额:
$ 3.18万 - 项目类别:
Studentship