Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
基本信息
- 批准号:8097478
- 负责人:
- 金额:$ 28.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-26 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-methyladenine-DNA glycosylaseActive SitesAffectAffinityAlkylationBase Excision RepairsBase PairingBindingBiochemicalBiological AssayCancer EtiologyChemotherapy-Oncologic ProcedureComplexDNADNA BindingDNA DamageDNA LigasesDNA RepairDNA biosynthesisDNA glycosylaseDNA lesionDNA-(apurinic or apyrimidinic site) lyaseDNA-3-methyladenine glycosidase IIDNA-Directed DNA PolymeraseDNA-Protein InteractionDiagnosisDiffusionEmbryoEnzyme KineticsEnzymesEquilibriumEscherichia coliEventExcisionExposure toFluorescence SpectroscopyGenetic TranscriptionGenomeGenome ScanGenomicsGoalsHealthHumanHydrogen BondingHydrolysisIn VitroIndividualKineticsLesionLifeLife ExpectancyLyaseMalignant NeoplasmsMeasuresMethodsMusMutagenesisMutationNormal CellNucleotidesOligonucleotidesPathway interactionsPredispositionProcessProtein DynamicsProteinsRare LesionReactionRelative (related person)Repair ComplexResearch PersonnelRoleRotationScaffolding ProteinScanningSeriesSiteSocietiesSourceStructureStructure-Activity RelationshipSubstrate SpecificityTestingThermodynamicsTimeTyrosineUrsidae FamilyVirus Inhibitorsanalogbasecancer therapychemical reactioncostcytotoxicenzyme structuregenome-widehuman APEX1 proteinnovelnucleotide analogoxidationprogramsprotein protein interactionreconstitutionrepair enzymerepairedresearch study
项目摘要
DESCRIPTION (provided by applicant): Spontaneous damage of DNA bases is a major source of cancer-causing mutations. Given the thousands of lesions generated per genome every day, it is remarkable that cancer remains a relatively infrequent event with the majority of cases arising relatively late in life. With increasing life expectancy and exposure to exogenous DNA damaging agents, society bears the ever increasing cost of diagnosing and treating cancer. At the cellular level the ability to safeguard against these spontaneous lesions relies largely on the base excision repair (BER) pathway whereby DNA glycosylases scan the genome to locate and excise base lesions. The action of an apurinic (AP)-specific endonuclease, AP-lyase/DNA polymerase, and DNA ligase are required to complete repair of the DNA. Our long-term goals are to understand how BER proteins locate and selectively act on a wide range of DNA lesions within genomic DNA and how the dynamics of protein-protein and protein-DNA interactions enable coordination of multi-step, multi-enzyme repair pathways. Recent evidence suggests that nucleotide flipping, the process by which a nucleotide is extracted from the DNA duplex and bound in an active site pocket, provides much of the selectivity in distinguishing damaged and undamaged bases. We propose to test this hypothesis by directly observing flipping of damaged and undamaged nucleotides by DNA glycosylases (Aim 1). The genomic search for rare lesions is facilitated by the examination of many nucleotides with each DNA binding event, therefore we will characterize the ability of BER enzymes to move along DNA and measure the efficiency with which sites of damage are productively engaged during a scanning encounter (Aim 2). As DNA repair intermediates are potentially cytotoxic or mutagenic, it is critical that initiated BER events be completed. We propose to investigate the dynamics of protein-protein interactions in BER and determine their functional significance in the coordination of multiple enzymatic activities (Aim 3). By combining the results from pre-steady state enzyme kinetics, fluorescence spectroscopy, and structure-activity relationships we have a unique opportunity to dissect the protein-DNA dynamics important for damage recognition and repair. As BER is a critical component of the cellular defense against cancer, and because these pathways are antagonistic toward some DNA damaging agents used in the treatment of cancer, these studies have the potential to contribute both to our understanding of mutagenesis and to advances in cancer therapy.
描述(由申请人提供):DNA 碱基的自发损伤是致癌突变的主要来源。鉴于每个基因组每天都会产生数千个病变,值得注意的是,癌症仍然是一种相对罕见的事件,大多数病例发生在生命的较晚时期。随着预期寿命的延长和接触外源 DNA 损伤剂的增加,社会承担着不断增加的诊断和治疗癌症的费用。在细胞水平上,防止这些自发损伤的能力很大程度上依赖于碱基切除修复(BER)途径,DNA糖基化酶通过该途径扫描基因组以定位和切除碱基损伤。完成 DNA 修复需要无嘌呤 (AP) 特异性核酸内切酶、AP 裂解酶/DNA 聚合酶和 DNA 连接酶的作用。我们的长期目标是了解 BER 蛋白如何定位并选择性地作用于基因组 DNA 内的各种 DNA 损伤,以及蛋白质-蛋白质和蛋白质-DNA 相互作用的动态如何实现多步骤、多酶修复途径的协调。最近的证据表明,核苷酸翻转(从 DNA 双链体中提取核苷酸并结合在活性位点口袋中的过程)在区分受损和未受损碱基方面提供了很大的选择性。我们建议通过直接观察 DNA 糖基化酶对受损和未受损核苷酸的翻转来检验这一假设(目标 1)。通过检查每个 DNA 结合事件的许多核苷酸,可以促进对罕见损伤的基因组搜索,因此我们将表征 BER 酶沿着 DNA 移动的能力,并测量在扫描过程中有效参与损伤位点的效率(目标 2)。由于 DNA 修复中间体具有潜在的细胞毒性或致突变性,因此完成启动的 BER 事件至关重要。我们建议研究 BER 中蛋白质-蛋白质相互作用的动态,并确定它们在协调多种酶活性中的功能意义(目标 3)。通过结合前稳态酶动力学、荧光光谱和结构-活性关系的结果,我们有一个独特的机会来剖析对于损伤识别和修复至关重要的蛋白质-DNA 动力学。由于 BER 是细胞防御癌症的关键组成部分,并且这些途径与癌症治疗中使用的一些 DNA 损伤剂具有拮抗作用,因此这些研究有可能有助于我们对突变的理解和癌症治疗的进步。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
- DOI:10.1021/bi200232c
- 发表时间:2011-05-24
- 期刊:
- 影响因子:2.9
- 作者:Zhao B;O'Brien PJ
- 通讯作者:O'Brien PJ
Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase.
人烷基腺嘌呤 DNA 糖基化酶翻转和切除 1,N(6)-乙烯腺嘌呤的动力学机制。
- DOI:10.1021/bi9015082
- 发表时间:2009
- 期刊:
- 影响因子:2.9
- 作者:Wolfe,AbigailE;O'Brien,PatrickJ
- 通讯作者:O'Brien,PatrickJ
Probing the DNA structural requirements for facilitated diffusion.
- DOI:10.1021/bi5013707
- 发表时间:2015-01-20
- 期刊:
- 影响因子:2.9
- 作者:Hedglin, Mark;Zhang, Yaru;O'Brien, Patrick J.
- 通讯作者:O'Brien, Patrick J.
Nonspecific DNA binding and coordination of the first two steps of base excision repair.
- DOI:10.1021/bi100889r
- 发表时间:2010-09-14
- 期刊:
- 影响因子:2.9
- 作者:Baldwin, Michael R.;O'Brien, Patrick J.
- 通讯作者:O'Brien, Patrick J.
Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
- DOI:10.1021/bi801046y
- 发表时间:2008-11-04
- 期刊:
- 影响因子:2.9
- 作者:Hedglin, Mark;O'Brien, Patrick J.
- 通讯作者:O'Brien, Patrick J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick J O'Brien其他文献
Patrick J O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick J O'Brien', 18)}}的其他基金
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7879360 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7667817 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7501279 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
9068971 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7321524 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
8579088 - 财政年份:2007
- 资助金额:
$ 28.01万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 28.01万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 28.01万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 28.01万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 28.01万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 28.01万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 28.01万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




