DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
基本信息
- 批准号:9068971
- 负责人:
- 金额:$ 28.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-26 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAging-Related ProcessAlkylating AgentsAmazeAmino AcidsAreaBase Excision RepairsBindingBiochemicalBiochemistryBiological AssayBiological ProcessCarcinogensCell DeathComplexDNADNA DamageDNA RepairDNA StructureDNA glycosylaseDNA lesionDataDefectDetectionDiffusionDiscriminationDiseaseEnvironmental ExposureEnzyme KineticsEnzymesEukaryotic CellExcisionExposure toFailureFluorescence SpectroscopyFundingGenesGeneticGenetic PolymorphismGenomeGenome ScanGenomic DNAGenomic InstabilityGoalsHealthHumanIn VitroKineticsKnowledgeLengthLesionLinkMicroscopicMissionMolecularMolecular ModelsMotionMutagenesisMutationNational Institute of General Medical SciencesNormal CellOGG1 geneOutcomePathway interactionsPhysiologicalPositioning AttributeProbabilityProgress ReportsProtein DynamicsProteinsPublic HealthReactionResearchResistanceSite-Directed MutagenesisSlideSomatic MutationSourceSpecificityStructureStructure-Activity RelationshipSubstrate SpecificitySurveysTestingThermodynamicsWorkactionable mutationage relatedanalogassaultassay developmentbasebiophysical techniquescancer riskchemical reactiongenome integritygenome sequencinggenome-widehuman DNAhuman diseasein vivoinnovationinsightmolecular modelingmolecular recognitionmutantnormal agingnovelrare variantrepair enzymerepairedresearch studywhole genome
项目摘要
DESCRIPTION (provided by applicant):
Spontaneous damage of DNA bases is a major source of genetic instability. Failure to correct this damage leads to somatic mutations that underlie many diseases associated with aging. The ability to safeguard against these spontaneous lesions relies largely on the base excision repair (BER) pathway whereby DNA glycosylases scan the genome to locate and excise base lesions. Many common forms of damage and proteins involved in the BER pathway have been identified and structurally characterized, but there is a fundamental gap in our understanding of how these enzymes accomplish this amazing task of genome-wide repair. Until this gap is filled, studies of DNA damage and mutagenesis will be largely observational and we will not be able to predict the effects of polymorphisms or exposure to novel carcinogens. Our long-term goal is to understand the molecular mechanisms and fundamental principles by which BER proteins locate and selectively act on a wide range of DNA lesions within genomic DNA. The central hypothesis, that protein-DNA dynamics are critical to the function of the BER pathway, particularly to those enzymes that recognize multiple forms of DNA damage, is strongly supported by data from our lab and others working in this area. Guided by progress and preliminary data from the past funding period, we propose to pursue four specific aims: 1) Determine the searching mechanism(s) of human DNA glycosylases in vitro; 2) Evaluate the hypothesis that facilitated diffusion contributes to efficient DNA repair in eukaryotic cells; 3) Quantify the catalytic specificity of AAG by employing competition kinetics with a wide variety of structurally diverse base lesions; 4) Determine the molecular mechanisms by which AAG achieves efficient recognition of a broad range of substrates. By combining the results from pre-steady state enzyme kinetics, fluorescence spectroscopy, and structure-activity relationships we are poised to dissect the protein-DNA dynamics important for recognition and repair of damaged bases. The approach is innovative, because we are developing novel biochemical assays and new molecular models to understand the kinetic and thermodynamic mechanisms of DNA repair. The proposed research is significant, because it has a high probability of expanding our understanding of BER mechanisms and to uncovering fundamental principles that are relevant for other DNA-templated biological processes. As BER is a critical component of the cellular defense against genomic instability, including endogenous damage, these studies will contribute both to our understanding of mutagenesis and the normal aging process.
描述(由申请人提供):
DNA碱基的自发损伤是遗传不稳定性的主要来源。如果不能纠正这种损伤,就会导致体细胞突变,导致许多与衰老相关的疾病。防止这些自发性病变的能力主要依赖于碱基切除修复(BER)途径,其中DNA糖基化酶扫描基因组以定位和切除碱基病变。BER通路中涉及的许多常见形式的损伤和蛋白质已经被鉴定和结构表征,但我们对这些酶如何完成全基因组修复这一惊人任务的理解存在根本性的差距。在这一空白被填补之前,DNA损伤和诱变的研究将主要是观察性的,我们将无法预测多态性或暴露于新致癌物的影响。我们的长期目标是了解BER蛋白定位和选择性作用于基因组DNA内广泛的DNA损伤的分子机制和基本原理。核心假设,即蛋白质-DNA动力学对BER途径的功能至关重要,特别是对那些识别多种形式DNA损伤的酶,得到了我们实验室和该领域其他工作人员的数据的有力支持。在过去的研究进展和初步数据的指导下,我们提出了四个具体目标:1)确定人DNA糖基化酶的体外搜索机制; 2)评估促进扩散有助于真核细胞中有效DNA修复的假设; 3)通过使用各种结构多样的碱基损伤的竞争动力学来量化AAG的催化特异性; 4)确定AAG实现广泛底物的有效识别的分子机制。通过结合从预稳态酶动力学,荧光光谱,和结构-活性关系的结果,我们准备解剖蛋白质-DNA动力学重要的识别和修复受损的碱基。这种方法是创新的,因为我们正在开发新的生化分析和新的分子模型,以了解DNA修复的动力学和热力学机制。这项研究意义重大,因为它很有可能扩大我们对BER机制的理解,并揭示与其他DNA模板生物过程相关的基本原理。由于BER是细胞防御基因组不稳定性(包括内源性损伤)的关键组成部分,因此这些研究将有助于我们理解诱变和正常衰老过程。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactivity and Cross-Linking of 5'-Terminal Abasic Sites within DNA.
DNA 内 5' 端无碱基位点的反应性和交联。
- DOI:10.1021/acs.chemrestox.7b00057
- 发表时间:2017-06-19
- 期刊:
- 影响因子:4.1
- 作者:Admiraal SJ;O'Brien PJ
- 通讯作者:O'Brien PJ
Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
- DOI:10.1021/acschembio.5b00409
- 发表时间:2015-11-20
- 期刊:
- 影响因子:4
- 作者:Zhang Y;O'Brien PJ
- 通讯作者:O'Brien PJ
Mechanisms of glycosylase induced genomic instability.
- DOI:10.1371/journal.pone.0174041
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Eyler DE;Burnham KA;Wilson TE;O'Brien PJ
- 通讯作者:O'Brien PJ
Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links.
碱基切除修复酶可保护双链 DNA 中的脱碱基位点免受链间交联的影响。
- DOI:10.1021/bi501491z
- 发表时间:2015-03-10
- 期刊:
- 影响因子:2.9
- 作者:Admiraal, Suzanne J.;O'Brien, Patrick J.
- 通讯作者:O'Brien, Patrick J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick J O'Brien其他文献
Patrick J O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick J O'Brien', 18)}}的其他基金
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7667817 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7879360 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
8097478 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7501279 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
8734457 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7321524 - 财政年份:2007
- 资助金额:
$ 28.47万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 28.47万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 28.47万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 28.47万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 28.47万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 28.47万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:














{{item.name}}会员




