DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
基本信息
- 批准号:8734457
- 负责人:
- 金额:$ 28.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-26 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-methyladenine-DNA glycosylaseAddressAffectAgingAging-Related ProcessAlkylating AgentsAmazeAmino AcidsAreaBase Excision RepairsBindingBiochemicalBiochemistryBiological AssayBiological ProcessCarcinogensCell DeathComplexDNADNA DamageDNA RepairDNA StructureDNA glycosylaseDNA lesionDataDefectDetectionDiffusionDiscriminationDiseaseEnvironmental ExposureEnzyme KineticsEnzymesEukaryotic CellExcisionExposure toFailureFluorescence SpectroscopyFundingGenesGeneticGenetic PolymorphismGenomeGenome ScanGenomic DNAGenomic InstabilityGenomicsGoalsHumanIn VitroKineticsKnowledgeLengthLesionLinkMicroscopicMissionMolecularMolecular ModelsMotionMutagenesisMutationNational Institute of General Medical SciencesNormal CellOGG1 geneOutcomePathway interactionsPhysiologicalPositioning AttributeProbabilityProgress ReportsProtein DynamicsProteinsPublic HealthReactionRelative (related person)ResearchResistanceSite-Directed MutagenesisSlideSomatic MutationSourceSpecificityStructureStructure-Activity RelationshipSubstrate SpecificitySurveysTestingThermodynamicsWorkage relatedanalogassaultassay developmentbasebiophysical techniquescancer riskchemical reactiongenome sequencinggenome-widehuman DNAhuman diseasein vivoinnovationinsightmolecular modelingmolecular recognitionmutantnormal agingnovelpublic health relevancerare variantrepair enzymerepairedresearch study
项目摘要
DESCRIPTION (provided by applicant):
Spontaneous damage of DNA bases is a major source of genetic instability. Failure to correct this damage leads to somatic mutations that underlie many diseases associated with aging. The ability to safeguard against these spontaneous lesions relies largely on the base excision repair (BER) pathway whereby DNA glycosylases scan the genome to locate and excise base lesions. Many common forms of damage and proteins involved in the BER pathway have been identified and structurally characterized, but there is a fundamental gap in our understanding of how these enzymes accomplish this amazing task of genome-wide repair. Until this gap is filled, studies of DNA damage and mutagenesis will be largely observational and we will not be able to predict the effects of polymorphisms or exposure to novel carcinogens. Our long-term goal is to understand the molecular mechanisms and fundamental principles by which BER proteins locate and selectively act on a wide range of DNA lesions within genomic DNA. The central hypothesis, that protein-DNA dynamics are critical to the function of the BER pathway, particularly to those enzymes that recognize multiple forms of DNA damage, is strongly supported by data from our lab and others working in this area. Guided by progress and preliminary data from the past funding period, we propose to pursue four specific aims: 1) Determine the searching mechanism(s) of human DNA glycosylases in vitro; 2) Evaluate the hypothesis that facilitated diffusion contributes to efficient DNA repair in eukaryotic cells; 3) Quantify the catalytic specificity of AAG by employing competition kinetics with a wide variety of structurally diverse base lesions; 4) Determine the molecular mechanisms by which AAG achieves efficient recognition of a broad range of substrates. By combining the results from pre-steady state enzyme kinetics, fluorescence spectroscopy, and structure-activity relationships we are poised to dissect the protein-DNA dynamics important for recognition and repair of damaged bases. The approach is innovative, because we are developing novel biochemical assays and new molecular models to understand the kinetic and thermodynamic mechanisms of DNA repair. The proposed research is significant, because it has a high probability of expanding our understanding of BER mechanisms and to uncovering fundamental principles that are relevant for other DNA-templated biological processes. As BER is a critical component of the cellular defense against genomic instability, including endogenous damage, these studies will contribute both to our understanding of mutagenesis and the normal aging process.
描述(由申请人提供):
DNA碱基的自发损伤是遗传不稳定的一个主要来源。如果不能纠正这种损害,就会导致体细胞突变,这些突变是许多与衰老相关的疾病的基础。抵御这些自发损害的能力在很大程度上依赖于碱基切除修复(BER)途径,DNA糖基酶通过该途径扫描基因组来定位和切除碱基损害。已经确定了许多常见的损伤形式和参与BER途径的蛋白质,并对其结构进行了表征,但我们对这些酶如何完成这一令人惊叹的全基因组修复任务的理解存在根本差距。在填补这一空白之前,对DNA损伤和突变的研究将在很大程度上是观察性的,我们将无法预测多态或接触新致癌物的影响。我们的长期目标是了解BER蛋白在基因组DNA中定位和选择性作用于广泛DNA损伤的分子机制和基本原理。核心假设是,蛋白质-DNA动力学对BER途径的功能至关重要,特别是对于那些识别多种形式DNA损伤的酶,这一假设得到了我们实验室和其他在这一领域工作的人的数据的有力支持。在过去资助期间的进展和初步数据的指导下,我们建议追求四个具体目标:1)确定体外人DNA糖基酶的搜索机制(S);2)评估促进扩散有助于真核细胞中有效的DNA修复的假设;3)通过与各种结构不同的碱基损伤的竞争动力学来量化AAG的催化专一性;4)确定AAG实现对广泛底物的有效识别的分子机制。通过结合稳态前酶动力学、荧光光谱和结构-活性关系的结果,我们准备剖析对识别和修复受损碱基重要的蛋白质-DNA动力学。这种方法是创新的,因为我们正在开发新的生化分析和新的分子模型来了解DNA修复的动力学和热力学机制。这项拟议的研究意义重大,因为它很有可能扩大我们对误码率机制的理解,并揭示与其他DNA模板生物过程相关的基本原理。由于BER是细胞抵御包括内源性损伤在内的基因组不稳定的关键组成部分,这些研究将有助于我们理解突变和正常的衰老过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick J O'Brien其他文献
Patrick J O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick J O'Brien', 18)}}的其他基金
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7879360 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7667817 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
8097478 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7501279 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
DNA-Protein Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的 DNA-蛋白质动力学
- 批准号:
9068971 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
Protein-DNA Dynamics in Base Excision DNA Repair
碱基切除 DNA 修复中的蛋白质-DNA 动力学
- 批准号:
7321524 - 财政年份:2007
- 资助金额:
$ 28.53万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 28.53万 - 项目类别:
Research Grant














{{item.name}}会员




