Genetic Recombination in C.elegans
线虫中的基因重组
基本信息
- 批准号:8054299
- 负责人:
- 金额:$ 30.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2012-08-14
- 项目状态:已结题
- 来源:
- 关键词:AffectAneuploidyArchitectureBiological AssayBloom SyndromeCaenorhabditis elegansChromatinChromosomal InstabilityChromosome PairingChromosome SegregationChromosomesCompetenceCongenital AbnormalityDNADNA Double Strand BreakDataData AnalysesDevelopmentDissociationEnsureEtiologyEventFailureGene ConversionGenesGeneticGenetic Crossing OverGenetic NondisjunctionGenetic RecombinationGenomeGenomic InstabilityGerm CellsGoalsHealthHistonesHomologous GeneHumanImageryIn VitroInborn Genetic DiseasesLeadLightLocationMass Spectrum AnalysisMeiosisMeiotic RecombinationMethodsModificationMolecularMolecular GeneticsMutationNematodaOptic ChiasmOrganismOutcomePathway interactionsPatientsPhosphorylation SitePredispositionProcessProphaseProteinsRegulationResearchRoleS PhaseSister ChromatidSiteSpontaneous abortionStagingStructureSystemTestingTimeWorkcancer typechromatin modificationdesigngenome-wideinsightmutantprogramsrepairedsegregationspatial relationshiptumor progression
项目摘要
DESCRIPTION (provided by applicant): Our long term goal is to understand how genetic recombination contributes to the faithful inheritance of chromosomes. Genetic recombination is of central importance to sexually reproducing organisms, since crossover recombination events between the DNA molecules of homologous chromosomes, and the resulting chiasmata, are necessary for proper chromosome segregation at the meiosis I division. Failure to form crossovers leads to chromosome missegregation and consequent aneuploidy, one of the leading causes of miscarriages and birth defects in humans. Meiotic crossing over is accomplished by deliberate induction of double-strand DNA breaks (DSBs), followed by repair of these breaks using meiosis-specific modifications of DSBR pathways in the context of meiosis-specific chromosome architecture. This process is subject to multiple levels of regulation to ensure that DSBs are formed and repaired in an appropriate temporal context, both to avoid posing a threat to genome integrity and to guarantee that each chromosome pair will undergo the obligate crossover required to promote homolog segregation. We are investigating the mechanisms that regulate and execute meiotic crossing over and chiasma formation in the nematode C. elegans, a simple metazoan organism that is especially amenable to combining sophisticated cytological and genetic approaches in a single experimental system, and in which robust crossover regulation mechanisms have been shown to operate. The proposed work will exploit recent advances that allow 1) cytological visualization of crossover-triggered changes in chromosome state and changes in the mode of DSBR, and 2) manipulation of the timing of meiotic prophase progression and the timing and location of DSB formation. We will investigate the mechanisms by which chromatin-associated protein HIM-17 functions in promoting initiation of meiotic recombination, chromatin modification and regulation of meiotic entry. We will investigate the mechanisms and regulation of meiotic recombination using methods designed to manipulate the timing and location of DSB formation and the timing of meiotic prophase progression. We will use a large battery of cytological and genetic functional assays to investigate the roles of newly-identified components of the crossover recombination machinery. Finally, we will investigate the role of HIM- 6/BLM in the formation of functional chiasmata. In addition to elucidating mechanisms important for chromosome inheritance during meiosis, this latter aim should yield insights regarding the etiology of genomic instability in patients with Bloom Syndrome, an inherited disorder causing predisposition to all types of cancer. PUBLIC HEALTH RELEVANCE: The proposed research will increase our understanding of the mechanisms that maintain chromosome integrity and ensure faithful inheritance of chromosomes. The work is highly relevant to human health, as errors in chromosome inheritance are one of the leading causes of miscarriages and birth defects and are also a major factor contributing to the development and progression of cancer. One component of the research plan will shed light on the mechanisms that lead to chromosome instability in patients with Bloom Syndrome, an inherited disorder causing predisposition to all types of cancer.
描述(由申请人提供):我们的长期目标是了解基因重组如何有助于染色体的忠实遗传。遗传重组对有性生殖生物体至关重要,因为同源染色体的DNA分子之间的交叉重组事件以及由此产生的交叉对于减数分裂I分裂时的适当染色体分离是必要的。未能形成交叉导致染色体错误分离和随之而来的非整倍体,这是人类流产和出生缺陷的主要原因之一。减数分裂交换是通过故意诱导双链DNA断裂(DSB),然后在减数分裂特异性染色体结构的背景下使用减数分裂特异性修饰DSBR途径修复这些断裂来完成的。这一过程受到多层次的调控,以确保DSB在适当的时间背景下形成和修复,既避免对基因组完整性构成威胁,又保证每个染色体对将经历促进同源物分离所需的专性交叉。我们正在研究的机制,调节和执行减数分裂交换和交叉形成的线虫C。elegans是一种简单的后生动物,特别适合在单一实验系统中结合复杂的细胞学和遗传学方法,并且其中已显示出稳健的交叉调节机制。拟议的工作将利用最近的进展,允许1)细胞学可视化的交叉触发的染色体状态的变化和DSBR模式的变化,和2)操纵减数分裂前期进展的时间和DSB形成的时间和位置。我们将研究染色质相关蛋白HIM-17在促进减数分裂重组启动、染色质修饰和减数分裂进入调控中的作用机制。我们将研究减数分裂重组的机制和调控,使用设计的方法来操纵DSB形成的时间和位置以及减数分裂前期进展的时间。我们将使用大量的细胞学和遗传功能检测来研究新发现的交叉重组机制的组成部分的作用。最后,我们将研究HIM- 6/BLM在功能交叉形成中的作用。除了阐明减数分裂过程中染色体遗传的重要机制外,后一个目标还应有助于了解布卢姆综合征患者基因组不稳定性的病因,布卢姆综合征是一种遗传性疾病,可导致所有类型癌症的易感性。公共卫生相关性:拟议的研究将增加我们对维持染色体完整性和确保染色体忠实遗传的机制的理解。这项工作与人类健康高度相关,因为染色体遗传错误是流产和出生缺陷的主要原因之一,也是导致癌症发展和进展的主要因素。该研究计划的一个组成部分将揭示导致布卢姆综合征患者染色体不稳定的机制,布卢姆综合征是一种遗传性疾病,导致所有类型癌症的易感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE M VILLENEUVE其他文献
ANNE M VILLENEUVE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE M VILLENEUVE', 18)}}的其他基金
Meiotic Chromosome Inheritance in Caenorhabditis
秀丽隐杆线虫减数分裂染色体遗传
- 批准号:
10623710 - 财政年份:2018
- 资助金额:
$ 30.97万 - 项目类别:
CHROMATIN-ASSOCIATED PROTEIN COMPLEXES IN THE C ELEGANS GERM LINE
线虫种系中的染色质相关蛋白复合物
- 批准号:
7420800 - 财政年份:2006
- 资助金额:
$ 30.97万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 30.97万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 30.97万 - 项目类别: