High-Throughput Computing for a Multi-Plan Framework in Radiotherapy

放射治疗多计划框架的高吞吐量计算

基本信息

  • 批准号:
    8077861
  • 负责人:
  • 金额:
    $ 29.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Computerized planning for radiation delivery via either external beam radiation therapy (EBRT) or intensity- modulated radiation therapy (IMRT) from linear accelerators is a complex process involving a large amount of input data and vast numbers of decision variables. Such large-scale combinatorial optimization problems are typically intractable for conventional approaches such as the direct application of the best available commercial algorithms, and thus specialized methods that take advantage of problem structure are required. Radiation treatment planning (RTP) problems are further complicated by the fact that they are multi-objective, that is, the RTP optimization process must take into account a trade-off between the competing goals of delivering appropriate doses to the tumor and avoiding the delivery of harmful radiation to nearby healthy organs. The goal of this proposal is to harness distributive computing via the Condor system for High Throughput Computing (HTC) within an RTP environment. The specific aims for this proposal are: 1) To develop a Nested Partitions (NP) framework that guides a global search process for optimal IMRT delivery parameters using HTC. 2) To develop parallel HTC-based linear programming (LP) methods to efficiently solve the dose optimization problem in IMRT for each given set of beam angles or beam apertures. (3) To exploit a high-throughput computing (HTC) environment and the developed NP/LP/segmentation framework to efficiently generate multiple plans for each given patient case. (4) To couple this multi-plan framework with a decision support system (DSS) that includes planning surface models, a graphical-user-interface (GUI) and machine learning tools to prediction OAR complication in order to aid in the ranking and selection of the generated treatment plans. This proposal requires a multi-disciplinary approach that is best conducted within the framework of the Innovations in Biomedical Computational Science and Technology program announcement. It brings together an interdisciplinary team of investigators with expertise in medical physics, mathematical programming, industrial engineering and clinical radiation oncology that is crucial to the development of the proposed multi- plan framework using HTC in radiation therapy. PUBLIC HEALTH RELEVANCE: The goal of this proposal is to develop a multi-dimensional platform for sophisticated treatment planning of radiation delivery. It will develop novel algorithms that will enable generation of superior treatment plans with the added advantage of increasing the speed of treatment planning. Further, it will allow physicians to know beforehand the quality of the treatment plan relative to the multiple treatment objectives and be able to determine the treatment complication scenario beforehand.
描述(由申请人提供): 用于经由来自线性加速器的外部射束放射治疗(EBRT)或调强放射治疗(IMRT)的放射递送的计算机化规划是涉及大量输入数据和大量决策变量的复杂过程。这种大规模的组合优化问题通常是棘手的传统方法,如直接应用最好的商业算法,因此需要专门的方法,利用问题的结构。放射治疗计划(RTP)问题由于它们是多目标的事实而进一步复杂化,也就是说,RTP优化过程必须考虑向肿瘤递送适当剂量和避免向附近健康器官递送有害辐射的竞争目标之间的权衡。该建议的目标是利用分布式计算通过秃鹰系统的高吞吐量计算(HTC)在RTP环境中。该提案的具体目标是:1)开发一个嵌套分区(NP)框架,该框架引导使用HTC的最佳IMRT输送参数的全局搜索过程。2)针对给定的射束角度或射束孔径,开发基于并行HTC的线性规划(LP)方法,以有效地解决调强放射治疗中的剂量优化问题。(3)利用高通量计算(HTC)环境和开发的NP/LP/分割框架,为每个给定的患者病例有效地生成多个计划。(4)将该多计划框架与决策支持系统(DSS)耦合,该决策支持系统(DSS)包括计划表面模型、图形用户界面(GUI)和机器学习工具,以预测OAR并发症,从而帮助对生成的治疗计划进行排序和选择。该提案需要采用多学科方法,最好在生物医学计算科学与技术创新计划公告的框架内进行。它汇集了一个跨学科的研究人员团队,他们在医学物理,数学编程,工业工程和临床放射肿瘤学方面具有专业知识,这对在放射治疗中使用HTC的拟议多计划框架的发展至关重要。公共卫生关系:该提案的目标是开发一个多维平台,用于复杂的放射治疗计划。它将开发新的算法,使上级治疗计划的生成具有增加治疗计划速度的额外优势。此外,它将允许医生预先知道治疗计划相对于多个治疗目标的质量,并且能够预先确定治疗并发症情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WARREN D D'SOUZA其他文献

WARREN D D'SOUZA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WARREN D D'SOUZA', 18)}}的其他基金

High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
  • 批准号:
    8271284
  • 财政年份:
    2009
  • 资助金额:
    $ 29.75万
  • 项目类别:
High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
  • 批准号:
    7845650
  • 财政年份:
    2009
  • 资助金额:
    $ 29.75万
  • 项目类别:
High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
  • 批准号:
    7736445
  • 财政年份:
    2009
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    7892330
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    8134253
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    7672268
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    7492304
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    7318613
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
  • 批准号:
    8288891
  • 财政年份:
    2007
  • 资助金额:
    $ 29.75万
  • 项目类别:
Feedback Control and Inferential Modeling for Radiotherapy Treatment Couch
放射治疗床的反馈控制和推理建模
  • 批准号:
    7131144
  • 财政年份:
    2006
  • 资助金额:
    $ 29.75万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 29.75万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 29.75万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 29.75万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 29.75万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了