Analyses of gradient echo MRI data

梯度回波 MRI 数据分析

基本信息

  • 批准号:
    8098408
  • 负责人:
  • 金额:
    $ 39.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-15 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this research is to develop novel analyses of the gradient echo (GRE) MRI data for quantitative characterization of intrinsic tissue property. Gradient echo MRI has been routinely used in clinical practice. A major aspect of its image contrast is based on its unique signal sensitivity to tissue susceptibility, which is particularly useful for studying blood deoxyhemoglobin (foundation of fMRI) and blood breakdown products, methemoglobin, hemosiderin and ferritin (various bleeding disorders including traumatic brain injury, hemorrhage and microbleed, vascular disorders, neurodegenerative diseases, et al) that have strong susceptibilities. For example, GRE MRI is becoming a method replacing CT for measuring acute intracerebral hemorrhage (ICH). However, GRE MRI is well known to have blooming susceptibility artifacts that make it difficult to identify the true boundary of hematoma and overestimate hematoma volume, a critical parameter in managing ICH patients. We hypothesize that rigorous analysis of GRE MRI data can allow accurate mapping of susceptibility source, enabling robust identification of hematoma volume. Mapping tissue susceptibility requires solving the field-to-source inverse problem, which is ill-posed using the phase data alone. We propose to develop a novel morphology enabled dipole inversion (MEDI) approach for analyzing both phase and magnitude data gradient echo MRI to extract tissue susceptibility quantity. The phase image contains the magnetic field information for fitting susceptibility via Maxwell's Equation. The magnitude image contains tissue structure information for matching with susceptibility interfaces via least discordance. We have proved mathematically that these phase and magnitude information are sufficient to determine susceptibility. We have obtained very encouraging preliminary data indicating that our MEDI inverse approach is sufficiently accurate in solving the field to source inverse problem. Accordingly, our proposed research consists of the following specific aims. 1) Develop the MEDI approach for analyzing phase and magnitude data in gradient echo MRI. 2) Apply MEDI to analyze gradient echo MRI of patients with primary ICH for measuring hematoma by comparing with CT. PUBLIC HEALTH RELEVANCE: This proposed research will develop novel analyses of gradient echo MRI data for characterizing tissue intrinsic susceptibility property. Successful development of this susceptibility mapping will allow accurate identification of hemorrhage border, solving a major problem of hematoma volume measurement in gradient echo MRI of intracerebral hemorrhage.
描述(由申请人提供):这项研究的目标是开发对梯度回波(GRE)MRI数据的新分析,以定量描述内在组织特性。梯度回波MRI已被常规应用于临床实践。其图像对比度的一个主要方面是基于其对组织敏感性的独特信号敏感性,这对于研究血液脱氧血红蛋白(fMRI的基础)和血液分解产物、高铁血红蛋白、含铁血黄素和铁蛋白(各种出血性疾病,包括创伤性脑损伤、出血和微出血、血管疾病、神经退行性疾病等)特别有用。例如,GRE MRI正在取代CT成为测量急性脑出血(ICH)的一种方法。然而,众所周知,GRE MRI存在大量敏感伪影,难以识别血肿的真实边界,并高估血肿体积,这是治疗脑出血患者的关键参数。我们假设,对GRE MRI数据的严格分析可以准确地定位易感性源,从而能够可靠地识别血肿量。绘制组织敏感性图需要解决场到源的逆问题,而仅使用相位数据是不适定的。我们提出了一种新的支持形态的偶极子反转(MEDI)方法,用于分析相位和幅度数据梯度回波MRI,以提取组织的敏感度。相图包含了通过麦克斯韦方程拟合磁化率所需的磁场信息。幅度图像包含用于通过最小不一致性与敏感性界面匹配的组织结构信息。我们已经从数学上证明了这些相位和幅度信息足以确定磁化率。我们已经获得了非常令人鼓舞的初步数据,表明我们的MEDI逆方法在解决场源逆问题方面足够准确。因此,我们提出的研究包括以下具体目标。1)发展了分析梯度回波MRI相位和幅度数据的MEDI方法。2)应用MEDI对原发性脑出血患者的梯度回波MRI测量血肿进行分析,并与CT进行比较。 公共卫生相关性:这项拟议的研究将开发对梯度回波MRI数据的新分析,以表征组织固有的敏感性属性。这种易感性图谱的成功开发将使出血边界的准确识别成为可能,解决了脑出血梯度回波MRI中血肿体积测量的主要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Wang其他文献

bspan style=font-family:Times New Roman,serif;font-size:18pt;Detecting Chaos from Time Series of/spanspan style=font-family:宋体;font-size:18pt; /spanspan style=
从时间序列中检测混沌
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xin Su;Yi Wang;Shengseng Duan;Junhai Ma
  • 通讯作者:
    Junhai Ma
A fast wavelet collocation met
满足快速小波搭配
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Wang;Yuesheng Xu
  • 通讯作者:
    Yuesheng Xu

Yi Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi Wang', 18)}}的其他基金

Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
  • 批准号:
    10720485
  • 财政年份:
    2023
  • 资助金额:
    $ 39.45万
  • 项目类别:
Key gut microbes shape intestinal epithelial lineage development, differentiation and metabolic function
关键肠道微生物塑造肠上皮谱系的发育、分化和代谢功能
  • 批准号:
    10572633
  • 财政年份:
    2023
  • 资助金额:
    $ 39.45万
  • 项目类别:
7T Magnetic Resonance Imaging System for Basic, Translational and Clinical Research
用于基础、转化和临床研究的 7T 磁共振成像系统
  • 批准号:
    9940405
  • 财政年份:
    2021
  • 资助金额:
    $ 39.45万
  • 项目类别:
Concurrent multiphoton microscopy and magnetic resonance imaging (COMPMRI)
并行多光子显微镜和磁共振成像 (COMPMRI)
  • 批准号:
    9360610
  • 财政年份:
    2016
  • 资助金额:
    $ 39.45万
  • 项目类别:
Multiple Sclerosis Lesion Magnetic Susceptibility Activity
多发性硬化症病变磁化率活性
  • 批准号:
    9922392
  • 财政年份:
    2015
  • 资助金额:
    $ 39.45万
  • 项目类别:
International Workshop on MRI Phase Contrast and Quantitative Susceptibility Mapp
MRI 相差和定量磁化率图国际研讨会
  • 批准号:
    8461038
  • 财政年份:
    2012
  • 资助金额:
    $ 39.45万
  • 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
  • 批准号:
    8431454
  • 财政年份:
    2011
  • 资助金额:
    $ 39.45万
  • 项目类别:
Analyses of gradient echo MRI data
梯度回波 MRI 数据分析
  • 批准号:
    8251134
  • 财政年份:
    2011
  • 资助金额:
    $ 39.45万
  • 项目类别:
MRI method for quantitatively mapping cerebral microbleeds
定量绘制脑微出血图的 MRI 方法
  • 批准号:
    8116244
  • 财政年份:
    2011
  • 资助金额:
    $ 39.45万
  • 项目类别:
Analyses of gradient echo MRI data
梯度回波 MRI 数据分析
  • 批准号:
    8448217
  • 财政年份:
    2011
  • 资助金额:
    $ 39.45万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 39.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了