Non-Thermal Plasma in Biomedicine: A New Paradigm for Redox Cell Activation
生物医学中的非热等离子体:氧化还原细胞激活的新范例
基本信息
- 批准号:8075299
- 负责人:
- 金额:$ 35.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAllogenicAllograftingAntioxidantsBiologicalBiological ModelsBiological SciencesBiologyBone MarrowCell Differentiation processCell ProliferationCell physiologyCellsChondrogenesisClinicalClinical ResearchCollaborationsDevelopmentDevicesElectronsEmbryonic StructuresEndothelial CellsEngineeringEngraftmentGene ExpressionGenerationsGenesGoalsHealedHistologyInstitutesKnowledgeLasersLengthLifeLinkMeasuresMediatingMesenchymal Stem CellsMethodsMicroscopyMolecularNitrogenNoduleOperative Surgical ProceduresOsteogenesisOutcome StudyOxidation-ReductionOxygenPhenotypePhysicsPlasmaPropertyProteinsPublishingReactive Nitrogen SpeciesReactive Oxygen SpeciesRegenerative MedicineRegulationReportingSignal PathwaySignal TransductionStem cellsSystemTechnologyTestingTimeTissue EngineeringTissuesUnited StatesUniversitiesVascular GraftVascularizationWorkWound Healingadult stem cellbasecancer cellhealingimplantationimprovedin vivoinsightnew technologynovel strategiesosteogenicprecursor cellscaffoldstem cell biologystem cell differentiationstem cell fatetissue regenerationtooltranscription factortreatment durationvascular tissue engineering
项目摘要
DESCRIPTION (provided by applicant): Non-thermal dielectric barrier discharge plasma (NT-Plasma) is a relatively new physics-based technology. Although there are few reports concerning the application of this technology to biological sciences, it is known that NT-plasma influences cell function mainly through activation of reactive oxygen and nitrogen species (ROS/RNS) signaling pathways. In collaboration with the Drexel Plasma Institute, arguably the foremost experts in the field of plasma physics in the United States, we propose to use NT-plasma as a tool to specifically manipulate cellular redox to promote MSC commitment and differentiation. The proposed study is based on recent observations that the NT-Plasma system promotes reactive oxygen species generation enhances development of embryonic structures and initiates the expression of many genes linked to cell differentiation. The first Specific Aim is to delineate the mechanism by which NT-Plasma generated ROS/RNS promotes MSC proliferation, commitment and differentiation; while simultaneously developing the NT-Plasma device for this application. We will test the hypothesis that NT-Plasma enhances stem cell differentiation along chondrogenic, endothelial and osteogenic lineages. Moreover, that this effect is mediated via ROS/RNS dependent signaling pathways that serve to influence the cell's oxidative state. To test this hypothesis, first, we will define the conditions that permit NT-Plasma to regulate the oxidative state of the cell. At the same time, we will fine tune the NT-Plasma system modulating the length of treatment, times of treatment and amplitude and discharge parameters. We will measure ROS and RNS, the redox status of the cells, the expression and activity of antioxidant proteins, as well as responsive signaling pathways. The second Specific Aim is to determine how NT-Plasma advances differentiation of progenitor cells in two model systems, an endochondral ossification system and a tissue engineered vascular tissue allograft. We propose to test the hypothesis that NT-Plasma positively influences stem cell commitment and differentiation in vivo. Each system provides a unique opportunity to evaluate the potential and feasibility of NT plasma treatment to enhance tissue healing and replacement, while at the same time gaining valuable understanding of the resulting signaling networks. If the goals of this application are successfully achieved, then the knowledge gained in development of NT-Plasma technology will be of transformative scientific and clinical importance. NT-Plasma's ability to amplify stem cell function will be an invaluable tool for tissue engineering and regenerative medicine in general, and will provide new insights into the basic biology of ROS signaling in stem cell biology.
PUBLIC HEALTH RELEVANCE: The purpose of this project is to explore and develop biological applications of Non-Thermal Plasma for use in tissue engineering and regenerative medicine. Our preliminary studies and other published reports indicate that this new technology can significantly influence the fate of adult stem cells and promote their proliferation, commitment and differentiation. Results generated from the proposed studies will provide improved methods for tissue repair and regeneration with direct applicability to both clinical research and surgical procedures.
描述(由申请人提供):非热介质阻挡放电等离子体(NT-等离子体)是一种相对较新的基于物理的技术。尽管关于该技术在生物科学中的应用的报道很少,但已知NT-血浆主要通过活性氧和氮物质(ROS/RNS)信号通路的活化来影响细胞功能。与德雷克塞尔等离子体研究所合作,可以说是美国等离子体物理学领域最重要的专家,我们建议使用NT-等离子体作为一种工具,专门操纵细胞氧化还原,以促进MSC的承诺和分化。这项拟议的研究基于最近的观察结果,即NT-血浆系统促进活性氧的产生,增强胚胎结构的发育,并启动许多与细胞分化相关的基因的表达。第一个具体目标是描述NT-血浆产生的ROS/RNS促进MSC增殖、定型和分化的机制;同时开发用于该应用的NT-血浆装置。我们将检验NT-血浆增强干细胞分化沿着软骨,内皮和成骨谱系的假设。此外,这种作用是通过ROS/RNS依赖性信号通路介导的,该信号通路用于影响细胞的氧化状态。为了验证这一假设,首先,我们将定义允许NT-血浆调节细胞氧化状态的条件。同时,我们将微调NT-等离子体系统,调节治疗长度、治疗次数以及振幅和放电参数。我们将测量ROS和RNS,细胞的氧化还原状态,抗氧化蛋白的表达和活性,以及响应信号通路。第二个具体目标是确定NT-血浆如何在两个模型系统中促进祖细胞分化,即软骨内骨化系统和组织工程血管组织同种异体移植物。我们建议测试的假设,NT-血浆积极影响干细胞的承诺和分化在体内。每个系统都提供了一个独特的机会来评估NT等离子体治疗的潜力和可行性,以增强组织愈合和替换,同时获得对所产生的信号网络的有价值的理解。如果成功实现了本申请的目标,那么在NT-Plasma技术开发过程中获得的知识将具有变革性的科学和临床重要性。NT-Plasma放大干细胞功能的能力将成为组织工程和再生医学的宝贵工具,并将为干细胞生物学中ROS信号传导的基础生物学提供新的见解。
公共卫生相关性:本计画的目的是探讨及发展非热电浆在组织工程及再生医学上的生物应用。我们的初步研究和其他已发表的报告表明,这项新技术可以显着影响成体干细胞的命运,并促进其增殖,承诺和分化。从拟议的研究中产生的结果将提供用于组织修复和再生的改进方法,直接适用于临床研究和外科手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theresa A Freeman其他文献
Cartilage-specific emSirt6/em deficiency represses IGF-1 and enhances osteoarthritis severity in mice
软骨特异性 emSirt6/em 缺乏抑制胰岛素样生长因子 1 并加重小鼠骨关节炎的严重程度
- DOI:
10.1136/ard-2023-224385 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:20.600
- 作者:
John A Collins;C James Kim;Ashley Coleman;Abreah Little;Matheus M Perez;Emily J Clarke;Brian Diekman;Mandy J Peffers;Susanna Chubinskaya;Ryan E Tomlinson;Theresa A Freeman;Richard F Loeser - 通讯作者:
Richard F Loeser
Theresa A Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theresa A Freeman', 18)}}的其他基金
Non-Thermal Plasma in Biomedicine: A New Paradigm for Redox Cell Activation
生物医学中的非热等离子体:氧化还原细胞激活的新范例
- 批准号:
8240982 - 财政年份:2011
- 资助金额:
$ 35.94万 - 项目类别:
Non-Thermal Plasma in Biomedicine: A New Paradigm for Redox Cell Activation
生物医学中的非热等离子体:氧化还原细胞激活的新范例
- 批准号:
8604154 - 财政年份:2011
- 资助金额:
$ 35.94万 - 项目类别:
Non-Thermal Plasma in Biomedicine: A New Paradigm for Redox Cell Activation
生物医学中的非热等离子体:氧化还原细胞激活的新范例
- 批准号:
8432763 - 财政年份:2011
- 资助金额:
$ 35.94万 - 项目类别:
ROS activation of Apoptosis Signal-regulated Kinase1 (Ask1) in chondrocytes
软骨细胞中细胞凋亡信号调节激酶 1 (Ask1) 的 ROS 激活
- 批准号:
7872721 - 财政年份:2010
- 资助金额:
$ 35.94万 - 项目类别:
ROS activation of Apoptosis Signal-regulated Kinase1 (Ask1) in chondrocytes
软骨细胞中细胞凋亡信号调节激酶 1 (Ask1) 的 ROS 激活
- 批准号:
8120280 - 财政年份:2010
- 资助金额:
$ 35.94万 - 项目类别:
相似海外基金
HLA-homozygous iPSC-cardiomyocytE Aggregate manufacturing technoLogies for allogenic cell therapy to the heart (HEAL)
HLA-纯合 iPSC-心肌细胞 用于心脏同种异体细胞治疗 (HEAL) 的聚集体制造技术
- 批准号:
10039902 - 财政年份:2022
- 资助金额:
$ 35.94万 - 项目类别:
EU-Funded
Evaluation of the efficacy of LAT1 inhibitor to tumor stroma and immunity in an allogenic mouse model of colon cancer having abundant stroma.
在具有丰富基质的同种异体结肠癌小鼠模型中评估 LAT1 抑制剂对肿瘤基质和免疫的功效。
- 批准号:
21K15925 - 财政年份:2021
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanism of kidney injury associated with graft-versus-host disease after allogenic stem cell transplantation
同种异体干细胞移植后移植物抗宿主病相关肾损伤的机制
- 批准号:
21K08410 - 财政年份:2021
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of the origin and maintenance mechanisms of junctional epithelium and identification of its stem cells using allogenic tooth germ transplantation
阐明交界上皮的起源和维持机制并利用同种异体牙胚移植鉴定其干细胞
- 批准号:
20K21672 - 财政年份:2020
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The study about the allogenic MSCs transplantation to the cardiac disease models.
同种异体间充质干细胞移植至心脏病模型的研究。
- 批准号:
18K16395 - 财政年份:2018
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Artificial nerves containing allogenic basal lamellae scaffold and bone marrow derived stem cells
含有同种异体基底板层支架和骨髓干细胞的人工神经
- 批准号:
17K10951 - 财政年份:2017
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of HSP90-alpha in preserving immunoprivilege of allogenic mesenchymal stem cells in the ischemic heart
HSP90-α 在保护缺血心脏同种异体间充质干细胞免疫特权中的作用
- 批准号:
370541 - 财政年份:2017
- 资助金额:
$ 35.94万 - 项目类别:
Operating Grants
Attempt to Prefabricate Vascularized Allogenic Bone in Recipient -Use of Cultured Bone Marrow Cells-
尝试在受者体内预制血管化的同种异体骨 - 使用培养的骨髓细胞 -
- 批准号:
16K10863 - 财政年份:2016
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Allogenic micobiota-reconstitution (AMR) for the treatment of patients with diarhea-predominant irritable bowel syndrome (IBS-D) - the AMIRA trial
同种异体微生物群重建 (AMR) 用于治疗腹泻型肠易激综合征 (IBS-D) 患者 - AMIRA 试验
- 批准号:
276706135 - 财政年份:2015
- 资助金额:
$ 35.94万 - 项目类别:
Clinical Trials
Induction of thyme epithelial cells from iPS cells and application to allogenic transplantation
iPS细胞诱导百里香上皮细胞及其在同种异体移植中的应用
- 批准号:
15H04915 - 财政年份:2015
- 资助金额:
$ 35.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




