Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
基本信息
- 批准号:8137249
- 负责人:
- 金额:$ 36.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnatomyAreaAtlasesAutomobile DrivingBiochemicalBiological Neural NetworksBrainBrain regionCommunitiesComplexComputer AnalysisComputer softwareComputing MethodologiesConsultationsCustomDataData SetData SourcesDatabasesDependencyDevelopmentDiseaseDrug AddictionDrug abuseEtiologyExhibitsFemaleFunctional disorderGenderGene ClusterGene ExpressionGenerationsGenesGeneticGenomeGenomicsGroupingHandHeritabilityHumanImageImageryIn Situ HybridizationIndividualInformation ResourcesInstitutesInternetLaboratoriesLibrariesLightLinkLiteratureMapsMeasurementMetadataMethodsMiningMolecular ProfilingMultivariate AnalysisMusNatureNervous system structureNetwork-basedOnline SystemsOpioidOrthologous GenePainPathway interactionsPatternPhasePhenotypePrincipal Component AnalysisPropertyResearchResearch PersonnelResearch ProposalsResolutionResourcesSampling StudiesScheduleSeriesSoftware ToolsSourceSpinal CordStagingStructureSubstance AddictionSubstance abuse problemSurveysSystemTestingTextTimeWeightWorkaddictionbasecomputerized toolscritical periodgenome wide association studygenome-wideinterestknowledge basemalepublic health relevancesoftware developmenttext searchingtooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): The increasing availability of genome wide data sets promise to shed light into the etiology and pathophysiology of genetically complex disorders, including substance abuse and dependence. There remain significant challenges, however: although there is evidence for significant heritability, genome wide association studies have typically revealed small effect sizes, possibly due to the polygenic nature of the disorders. The brain-wide gene expression data sets from the Allen Institute offers new data sources that could be used to group genes together based on similarities in their expression profiles in anatomic space, thus enhancing the power of statistical tests in genome-wide studies. Due to the unprecedented spatial resolution in these data sets, with genome-wide and brain-wide coverage, specific hypotheses involving intercellular biochemical networks as well as brain-wide neural networks can also be examined. At the Allen Institute and at Cold Spring Harbor Laboratory, we have been collaboratively analyzing the Allen Brain Atlas (ABA) adult mouse brain data set, and preliminary results demonstrate that the spatial co-expression patterns of genes are indeed a rich source of information. In this application, we intend to focus this analysis on addiction-related gene sets, in consultation with experts on addiction research and integrating relevant online information resources. Specific aims in the first year (R21 phase) include (1) development and refinement of software and web-based tools for analysis of co-expression patterns in gene sets and (2) multivariate analysis of an initial set of addiction related genes. The first year will focus on the adult mouse brain data set that is already at hand. In subsequent years (years 2-4, R33 phase), we will extend the co-expression analysis to mouse developmental and spinal cord data sets (Aim 1), and human brain data sets (Aim 2), that are scheduled to become available during this period. Additionally, we will mine existing databases and the literature to augment our initial gene lists as well as to develop a database of associations between substance abuse phenotypes and corresponding brain areas (Aim 3). This will allow us to more fully analyze the intra and intercellular networks that may be involved in addiction. Finally, we will make the computational tools and analysis results developed as part of our research publicly available in the form of a web portal (aim 4).
PUBLIC HEALTH RELEVANCE: The identification of genes and gene networks driving drug abuse and addiction is a major current challenge in addiction genetics. The public presentation of tools for understanding spatially mapped genomic datasets such as the ABA will have major impact on researchers aiming to understand these genetic networks and pathways. The proposed work will encompass both the identification of key addiction gene clusters as well as the generation of useful online methods for addiction researchers.
描述(由申请人提供):全基因组数据集的日益可用有望揭示遗传复杂疾病的病因学和病理生理学,包括物质滥用和依赖。然而,仍然存在重大挑战:尽管有证据表明存在显著的遗传性,但全基因组关联研究通常揭示了小的效应大小,可能是由于疾病的多基因性质。艾伦研究所的全脑基因表达数据集提供了新的数据源,可用于根据基因在解剖空间中表达谱的相似性将基因分组,从而增强了统计测试在全基因组研究中的能力。由于这些数据集具有前所未有的空间分辨率,覆盖了全基因组和全脑,因此还可以检验涉及细胞间生化网络和全脑神经网络的特定假设。在艾伦研究所和冷泉港实验室,我们一直在合作分析艾伦大脑图谱(ABA)成年小鼠的大脑数据集,初步结果表明,基因的空间共表达模式确实是一个丰富的信息来源。在本申请中,我们打算通过咨询成瘾研究专家并整合相关在线信息资源,将这一分析集中在成瘾相关基因集上。第一年(R21阶段)的具体目标包括(1)开发和完善用于分析基因集中共表达模式的软件和基于网络的工具,以及(2)对一组初始成瘾相关基因进行多变量分析。第一年将重点放在已经存在的成年小鼠大脑数据集上。在接下来的几年(2年至4年,R33阶段),我们将把共表达分析扩展到小鼠发育和脊髓数据集(AIM 1),以及计划在此期间提供的人脑数据集(AIM 2)。此外,我们将挖掘现有的数据库和文献,以充实我们最初的基因列表,并开发一个物质滥用表型和相应大脑区域之间关联的数据库(目标3)。这将使我们能够更全面地分析可能与成瘾有关的细胞内和细胞间网络。最后,我们将把作为我们研究的一部分开发的计算工具和分析结果以门户网站的形式公开提供(目标4)。
公共卫生相关性:识别导致药物滥用和成瘾的基因和基因网络是成瘾遗传学目前面临的主要挑战。公开展示用于理解空间图谱基因组数据集的工具,如ABA,将对旨在了解这些遗传网络和途径的研究人员产生重大影响。这项拟议的工作将包括识别关键的成瘾基因簇以及为成瘾研究人员生成有用的在线方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hawrylycz其他文献
Michael Hawrylycz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hawrylycz', 18)}}的其他基金
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
- 批准号:
10684769 - 财政年份:2022
- 资助金额:
$ 36.94万 - 项目类别:
A Community Framework for Data-driven Brain Transcriptomic Cell Type Definition, Ontology, and Nomenclature
数据驱动的脑转录组细胞类型定义、本体论和命名法的社区框架
- 批准号:
10012886 - 财政年份:2020
- 资助金额:
$ 36.94万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
7765746 - 财政年份:2009
- 资助金额:
$ 36.94万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
7931445 - 财政年份:2009
- 资助金额:
$ 36.94万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
8325662 - 财政年份:2009
- 资助金额:
$ 36.94万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 36.94万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 36.94万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Studentship














{{item.name}}会员




