Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
基本信息
- 批准号:8325662
- 负责人:
- 金额:$ 36.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnatomyAreaAtlasesAutomobile DrivingBiochemicalBiological Neural NetworksBrainBrain regionCommunitiesComplexComputer AnalysisComputer softwareComputing MethodologiesConsultationsCustomDataData SetData SourcesDatabasesDependencyDevelopmentDiseaseDrug AddictionDrug abuseEtiologyExhibitsFemaleFunctional disorderGenderGene ClusterGene ExpressionGene Expression ProfileGenerationsGenesGeneticGenomeGenomicsGroupingHandHeritabilityHumanImageImageryIn Situ HybridizationIndividualInformation ResourcesInstitutesInternetLaboratoriesLibrariesLightLinkLiteratureMapsMeasurementMetadataMethodsMiningMolecular ProfilingMultivariate AnalysisMusNatureNervous system structureNetwork-basedOnline SystemsOpioidOrthologous GenePainPathway interactionsPatternPhasePhenotypePrincipal Component AnalysisPropertyResearchResearch PersonnelResearch ProposalsResolutionResourcesSampling StudiesScheduleSeriesSoftware ToolsSourceSpinal CordStagingStructureSubstance AddictionSubstance abuse problemSurveysSystemTestingTextTimeWeightWorkabstractingaddictionbasecomputerized toolscritical periodgenome wide association studygenome-wideinterestknowledge basemalesoftware developmenttext searchingtooluser-friendly
项目摘要
Project Summary/Abstract
The increasing availability of genome wide data sets promise to shed light into the etiology and
pathophysiology of genetically complex disorders, including substance abuse and dependence.
There remain significant challenges, however: although there is evidence for significant
heritability, genome wide association studies have typically revealed small effect sizes, possibly
due to the polygenic nature of the disorders. The brain-wide gene expression data sets from the
Allen Institute offers new data sources that could be used to group genes together based on
similarities in their expression profiles in anatomic space, thus enhancing the power of statistical
tests in genome-wide studies. Due to the unprecedented spatial resolution in these data sets, with
genome-wide and brain-wide coverage, specific hypotheses involving intercellular biochemical
networks as well as brain-wide neural networks can also be examined.
At the Allen Institute and at Cold Spring Harbor Laboratory, we have been collaboratively
analyzing the Allen Brain Atlas (ABA) adult mouse brain data set, and preliminary results
demonstrate that the spatial co-expression patterns of genes are indeed a rich source of
information. In this proposal, we intend to focus this analysis on addiction-related gene sets, in
consultation with experts on addiction research and integrating relevant online information
resources. Specific aims in the first year (R21 phase) include (1) development and refinement of
software and web-based tools for analysis of co-expression patterns in gene sets and (2)
multivariate analysis of an initial set of addiction related genes. The first year will focus on the
adult mouse brain data set that is already at hand. In subsequent years (years 2-4, R33 phase), we
will extend the co-expression analysis to mouse developmental and spinal cord data sets (Aim 1),
and human brain data sets (Aim 2), that are scheduled to become available during this period.
Additionally, we will mine existing databases and the literature to augment our initial gene lists
as well as to develop a database of associations between substance abuse phenotypes and
corresponding brain areas (Aim 3). This will allow us to more fully analyze the intra and
intercellular networks that may be involved in addiction. Finally, we will make the
computational tools and analysis results developed as part of our research publicly available in
the form of a web portal (aim 4).
项目摘要/摘要
全基因组数据集的日益可获得性有望揭示病因学和
遗传性复杂疾病的病理生理学,包括药物滥用和依赖。
然而,仍然存在重大挑战:尽管有证据表明,
遗传性,全基因组关联研究通常揭示了小的效应大小,可能
由于疾病的多基因性质。全脑基因表达数据集来自
艾伦研究所提供了新的数据源,可用于根据以下条件将基因分组
它们在解剖空间表达谱的相似性,从而增强了统计学的力量
全基因组研究中的测试。由于这些数据集具有前所未有的空间分辨率,
全基因组和全脑覆盖,涉及细胞间生化的特定假设
网络以及全脑神经网络也可以被研究。
在艾伦研究所和冷泉港实验室,我们一直在合作
分析Allen Brain Atlas(ABA)成年小鼠的大脑数据集和初步结果
证明基因的空间共表达模式确实是一个丰富的来源
信息。在这项建议中,我们打算将这一分析集中在与成瘾相关的基因集上,在
与成瘾研究专家进行咨询,整合相关在线信息
资源。第一年(R21阶段)的具体目标包括(1)开发和完善
用于分析基因集中共表达模式的软件和基于网络的工具和(2)
成瘾相关基因初始集合的多变量分析。第一年将重点放在
已经在手边的成年小鼠大脑数据集。在接下来的几年(第2-4年,R33阶段),我们
将把共表达分析扩展到小鼠发育和脊髓数据集(目标1),
和人脑数据集(目标2),计划在此期间提供。
此外,我们还将挖掘现有的数据库和文献以充实我们最初的基因列表
以及开发药物滥用表型和药物滥用表型之间关联的数据库
相应的脑区(目标3)。这将使我们能够更全面地分析内部和
可能与成瘾有关的细胞间网络。最后,我们将使
作为我们研究的一部分开发的计算工具和分析结果可在
门户网站的形式(目标4)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Canonical genetic signatures of the adult human brain.
- DOI:10.1038/nn.4171
- 发表时间:2015-12
- 期刊:
- 影响因子:25
- 作者:Hawrylycz M;Miller JA;Menon V;Feng D;Dolbeare T;Guillozet-Bongaarts AL;Jegga AG;Aronow BJ;Lee CK;Bernard A;Glasser MF;Dierker DL;Menche J;Szafer A;Collman F;Grange P;Berman KA;Mihalas S;Yao Z;Stewart L;Barabási AL;Schulkin J;Phillips J;Ng L;Dang C;Haynor DR;Jones A;Van Essen DC;Koch C;Lein E
- 通讯作者:Lein E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Hawrylycz其他文献
Michael Hawrylycz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Hawrylycz', 18)}}的其他基金
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
- 批准号:
10684769 - 财政年份:2022
- 资助金额:
$ 36.11万 - 项目类别:
A Community Framework for Data-driven Brain Transcriptomic Cell Type Definition, Ontology, and Nomenclature
数据驱动的脑转录组细胞类型定义、本体论和命名法的社区框架
- 批准号:
10012886 - 财政年份:2020
- 资助金额:
$ 36.11万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
7765746 - 财政年份:2009
- 资助金额:
$ 36.11万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
7931445 - 财政年份:2009
- 资助金额:
$ 36.11万 - 项目类别:
Co-expression Networks of Addiction-Related Genes in the Mouse and Human Brain
小鼠和人脑中成瘾相关基因的共表达网络
- 批准号:
8137249 - 财政年份:2009
- 资助金额:
$ 36.11万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 36.11万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 36.11万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 36.11万 - 项目类别:
Studentship














{{item.name}}会员




