Neural Tract-tracing Nucleic Acid Carriers
神经束示踪核酸载体
基本信息
- 批准号:8003119
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-08 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcrylatesAminesAnimal ModelBehavioralBiochemicalBiologicalBrainCaliberCell membraneChargeChemicalsChemistryChronicChronic Brain InjuryCommunitiesComplexConfidential InformationCyanoacrylatesDNA Sequencing FacilityDevelopmentDiseaseDisease modelDrug AddictionDrug FormulationsElectrostaticsEvaluationGene ExpressionGene TargetingGenesGeneticGoalsGovernmentHealthHumanIn VitroInvestigationLabelLatexLeadLifeLigandsLigationMasksMindModificationMolecularMonitorNatureNervous System PhysiologyNervous system structureNeuronal PlasticityNeuronsNeurosciencesNeurosciences ResearchNucleic AcidsParkinson DiseasePerformancePersonsPhasePhosphinesPhysiologicalPlasmidsPreparationProcessPropertyReagentRegulationReporterResearch Project GrantsResistanceSafetyScreening procedureSideSmall Business Innovation Research GrantSmall Interfering RNASurfaceSystemTechniquesTechnologyTestingTherapeuticTracerTransfectionaptamerbasecopolymerdesigneffective therapyfunctional groupimprovedin vivoinnovationnanoparticlenanoparticulatenervous system disorderneural circuitneural tractneurophysiologynovelparticleperformance testspre-clinicalretrograde transporttechnology developmenttooluptakevector
项目摘要
DESCRIPTION (provided by applicant): "Neural Tract-tracing Nucleic Acid Carriers" Existing transfection reagents perform very poorly in mature neurons in vitro, and are not suitable for in vivo use. This Phase I project will test the performance of a novel nucleic acid carrier under development at Innovative Surface Technologies, Inc. (ISurTec) for universal transfection of neurons in vitro and in vivo. This technology is platform-based and consists of a polymeric nanoparticle for high-efficiency non-viral gene and siRNA transfection, chemically masked as a neural tract-tracer through surface modification. Neural tract-tracing surface chemistry was chosen for the carrier because the tract-tracers have repeatedly demonstrated efficient reagent uptake and retrograde particle transport, which are believed to be the major barriers to neuronal transfection. Retrograde transport is particularly important for transfection of mature neurons with gene constructs, due to the highly elongated nature of neuronal processes. The proposed carrier also includes surface functional groups for customizable attachment of targeting ligands. The objectives of this research project are to optimize the reagent formulation to achieve a transfection efficiency of greater than 50% in mature mammalian neurons, demonstrate neuronal sub-type targeting capability through ligand attachment, and predictably modify the functional properties of a CNS circuit in an animal model. Successful development of this technology will enable the targeted regulation/observation of neuroplasticity and circuit function in the intact nervous system using molecular constructs. An unprecedented level of transfection efficiency and targeting capability for mature neurons is expected from this nucleic acid carrier by incorporating the essential features of nanoparticulate neural tract-tracers. A combination of high efficiency transfection and precise in vivo targeting capability would serve as a bridge between the field of molecular neurosciences and the systems, behavioral, and preclinical neurosciences, greatly increasing our means to understand and manipulate neuroplasticity and brain function, by enabling the increasingly powerful molecular- biological tools in use today to be broadly applied to neuroscience research. Ultimately, this strategy is expected to lead to more effective therapeutic treatments for a variety of neurological diseases and disorders, including Parkinson's disease, brain injury, and chronic drug addiction.
PUBLIC HEALTH RELEVANCE: Neurological diseases and disorders, ranging from Parkinson's disease to chronic drug addiction, are extremely difficult to treat due to the complexity and unique challenges of the brain, its neurons, and its circuits. Moreover, neurons are highly resistant to nucleic acid transfection, which hinders the application of today's increasingly powerful molecular-biological tools in neuroscience research. In this Phase I proposal we will test a novel nanoparticle technology designed to significantly increase our understanding of nervous system function through the genetic regulation of brain circuits, and enable more effective treatments for variety of ailments afflicting the human nervous system.
描述(由申请人提供):“神经束示踪核酸载体”现有的转染试剂在体外成熟神经元中的表现非常差,并且不适合于体内使用。该第一阶段项目将测试创新表面技术公司正在开发的新型核酸载体的性能。(ISurTec)用于体外和体内神经元的通用转染。该技术是基于平台的,由用于高效非病毒基因和siRNA转染的聚合物纳米颗粒组成,通过表面修饰作为神经束示踪剂进行化学掩蔽。选择神经束示踪表面化学用于载体,因为束示踪剂已经反复证明了有效的试剂摄取和逆行颗粒转运,这被认为是神经元转染的主要障碍。由于神经元过程的高度伸长性质,逆行运输对于用基因构建体转染成熟神经元特别重要。所提出的载体还包括用于靶向配体的可定制连接的表面官能团。本研究项目的目标是优化试剂配方,以实现在成熟哺乳动物神经元中超过50%的转染效率,通过配体附着证明神经元亚型靶向能力,并可预测地修改动物模型中CNS回路的功能特性。该技术的成功开发将使得能够使用分子构建体在完整的神经系统中有针对性地调节/观察神经可塑性和回路功能。一个前所未有的水平的转染效率和成熟神经元的靶向能力,预计从这种核酸载体通过纳入纳米颗粒神经束示踪剂的基本特征。高效转染和精确的体内靶向能力的组合将作为分子神经科学领域与系统、行为和临床前神经科学之间的桥梁,通过使当今使用的日益强大的分子生物学工具能够广泛应用于神经科学研究,极大地增加了我们理解和操纵神经可塑性和脑功能的手段。最终,这一策略有望为各种神经系统疾病和障碍提供更有效的治疗方法,包括帕金森病,脑损伤和慢性药物成瘾。
公共卫生关系:神经系统疾病和障碍,从帕金森病到慢性药物成瘾,由于大脑、其神经元和其回路的复杂性和独特挑战而极难治疗。此外,神经元对核酸转染具有高度抵抗性,这阻碍了当今日益强大的分子生物学工具在神经科学研究中的应用。在这个第一阶段的提案中,我们将测试一种新的纳米颗粒技术,旨在通过大脑回路的遗传调节来显着增加我们对神经系统功能的理解,并使人们能够更有效地治疗各种困扰人类神经系统的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Stephen Guire其他文献
Eric Stephen Guire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Stephen Guire', 18)}}的其他基金
Ultra-low attachment coatings to maintain CSF shunt patency
超低附着涂层可保持脑脊液分流管的通畅
- 批准号:
10077986 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Studentship
Organoborane-catalysed approaches to biologically active amines
有机硼烷催化制备生物活性胺的方法
- 批准号:
EP/Y00146X/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Transforming Amines into Complex Polycyclic Molecules and Bioactive Natural Products
将胺转化为复杂的多环分子和生物活性天然产物
- 批准号:
2247651 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Ti-catalyzed cascading hydroaminoalkylation as a route to complex functionalized amines
Ti 催化级联氢氨基烷基化作为制备复杂官能化胺的途径
- 批准号:
10750347 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
New Photocatalytic C-C Bond-Forming Reactivity of Unprotected Primary Amines
未受保护伯胺的新光催化 C-C 键形成反应
- 批准号:
EP/X026566/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Alliance Grants
Development of Strategies for the Enantioselective Synthesis of Heterocycles and Acyclic Amines
杂环和无环胺对映选择性合成策略的发展
- 批准号:
10656344 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:














{{item.name}}会员




