Enzymatic Detection of Petroleum in Seafood
海鲜中石油类的酶法检测
基本信息
- 批准号:8127480
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Oil spills can cause tremendous environmental damage and are a serious threat to public health. Petroleum contains many toxic compounds such as polyaromatic hydrocarbons (PAHs). Some PAH compounds are highly carcinogenic and cause DNA mutations in humans. When petroleum is spilled into the sea, PAH compounds rapidly spread through the marine environment and eventually accumulate in marine life and threaten our seafood supply. The FDA has mandated that petroleum-contaminated seafood is a human health threat and should not be harvested or sold. Therefore, after an oil spill, careful monitoring is needed to assess the extent of the contaminated areas, ensure that seafood supplies are free of PAH compounds and monitor the return of affected areas to a normal state to allow re-opening of closed areas. Unfortunately, despite this critical need, the most currently used testing method has been shown to be somewhat inaccurate and unreliable for the detection of potentially hazardous levels of PAH compounds in seafood. New alternative testing methods are needed. Our proposed research will create improved tests to detect petroleum components in seafood. We will develop new enzyme-based tests to detect PAH compounds in seafood using dioxygenases enzymes from microbes. These enzymes will be used to generate a color change when PAH compounds are present in the sample. Our simple enzyme tests can be directly used in microplates, a widely-accepted, inexpensive, high-throughput format for food testing applications. To ease the transition to our new enzymatic format, our assays will be designed to work well with currently accepted seafood processing methods. We will also investigate ways to shorten the sample processing steps to increase the throughput-capacity of the test. Our new test kits will provide seafood producers and government agencies such as the FDA and NOAA with much-needed cost-effective, reliable and sensitive tools to detect petroleum in seafood after oil spills.
PUBLIC HEALTH RELEVANCE: Oil spills are major threats to public health and the environment. Petroleum contains many toxic and carcinogenic substances; these substances can get into seafood near oil spill sites. It is important to test for toxic oil substances in seafood after an oil spill, but current methods are not adequate for thorough testing. Our proposed research will produce novel enzyme-based tests for oil contamination in seafood. The improved reliable properties of our new method will greatly assist the FDA to ensure seafood safety.
描述(申请人提供):漏油会造成巨大的环境破坏,并对公众健康构成严重威胁。石油含有许多有毒化合物,如多环芳烃(PAH)。一些PAH化合物具有高度致癌性,可导致人类DNA突变。当石油泄漏入海时,多环芳烃化合物迅速扩散到海洋环境中,最终在海洋生物中积累,威胁到我们的海产品供应。美国食品和药物管理局(FDA)已经规定,石油污染的海鲜是一种人类健康威胁,不应该收获或出售。因此,在发生石油泄漏后,需要进行仔细监测,以评估受污染区域的范围,确保海产品供应不含PAH化合物,并监测受影响区域恢复正常状态,以便重新开放封闭区域。不幸的是,尽管有这一关键需求,目前使用的测试方法已被证明是有点不准确和不可靠的检测海鲜中的PAH化合物的潜在危险水平。需要新的替代测试方法。我们提议的研究将改进检测海鲜中石油成分的方法。我们将开发新的基于酶的检测方法,利用微生物中的双加氧酶检测海产品中的PAH化合物。当样品中存在PAH化合物时,这些酶将用于产生颜色变化。我们简单的酶测试可直接用于微孔板,这是一种广泛接受的、廉价的、高通量的食品测试应用形式。为了便于过渡到我们的新酶形式,我们的检测方法将被设计为与目前公认的海鲜加工方法配合使用。我们还将研究缩短样品处理步骤的方法,以增加测试的吞吐量。我们的新检测试剂盒将为海产品生产商和FDA和NOAA等政府机构提供急需的具有成本效益、可靠和灵敏的工具,用于在石油泄漏后检测海产品中的石油。
公共卫生相关性:石油泄漏是对公共卫生和环境的主要威胁。石油含有许多有毒和致癌物质;这些物质可以进入漏油地点附近的海鲜。在石油泄漏后,对海产品中的有毒石油物质进行测试很重要,但目前的方法不足以进行彻底的测试。我们提出的研究将产生新的基于酶的测试海鲜中的油污染。我们新方法的改进可靠性将大大有助于FDA确保海鲜安全。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH FRANCIS KREBS其他文献
JOSEPH FRANCIS KREBS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH FRANCIS KREBS', 18)}}的其他基金
PA22176, SBIR, Phase I, Lateral Flow Assay to Detect Malaria
PA22176,SBIR,第一阶段,侧向层析检测疟疾
- 批准号:
10697156 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Rapid detection of toxic petroleum residues in seafood
快速检测海鲜中有毒石油残留物
- 批准号:
8524528 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Rapid detection of methylglyoxal in blood samples
快速检测血液样本中的甲基乙二醛
- 批准号:
8455478 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Rapid detection of toxic petroleum residues in seafood
快速检测海鲜中有毒石油残留物
- 批准号:
8727300 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
- 批准号:
24K17366 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016218/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
- 批准号:
MR/Z503812/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant