Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
基本信息
- 批准号:8037107
- 负责人:
- 金额:$ 26.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-15 至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlgorithmsBiopsy SpecimenBlindedBreastCancer PatientCharacteristicsClinicalComputer SimulationDataData SetDiagnosisDiseaseDrug FormulationsFinancial compensationFreedomGoalsHistopathologyHumanImageImaging TechniquesInstructionJointsKineticsLeadMagnetic Resonance ImagingMeasuresMethodsMetricModelingModificationMorphologic artifactsMorphologyMotionNeoadjuvant TherapyPatientsPatternPerformancePilot ProjectsPropertyPublic HealthRadialReaderResearchResearch PersonnelResolutionRotationSamplingScanningSeriesTechniquesTimeTracerTranslationsbasebreast lesionchemotherapycomputerized data processingcostdata sharingdata spacedigitalhuman dataimage reconstructionimage registrationimprovedmalignant breast neoplasmnovelobject motionoperationreconstructionresponsesimulationtreatment responsetumor
项目摘要
Seeinstructions):
Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of breast cancer patients has shown
considerable promise in aiding diagnoses of breast lesions and characterizing treatment response. The
challenge in DCE breast imaging is the need for both good temporal resolution to capture tracer kinetic
properties and good spatial resolution for visualizing morphology. Traditional dynamic methods in MRI
acquire incomplete k-space data at each time point, and use k-space temporal interpolation (or data sharing)
to form "complete" k-space datasets prior to Fourier reconstruction. We propose to investigate model-based
image reconstruction methods that avoid k-space interpolation by estimating the object model parameters
that best fit the available k-space data. These reconstruction methods will incorporate parallel imaging
techniques. They will also be extended to account for nonrigid deformations due to patient motion during the
scan using novel methods for joint estimation of motion parameters and image intensity parameters. The
methods will be evaluated using computer simulations, phantom studies, and human DCE-MRI scan data.
The human data will be collected as part of Project 1 and will include DCE-MRI scans of breast cancer
patients undergoing neoadjuvant chemotherapy, where early prediction of tumor response is of clinical
importance. The proposed methods have the potential to improve image quality both in breast DCE-MRI as
well as other dynamic MR applications.
RELEVANCE (See instructions):
The relevance of this research to public health is that improving the quality of MR images through more
sophisticated data processing may lead to more accurate diagnosis and treatment of patients with breast
cancer and other diseases.
参见说明):
乳腺癌患者的动态对比增强(DCE)磁共振成像(MRI)显示,
在帮助诊断乳腺病变和表征治疗反应方面具有相当大的前景。的
VCE乳腺成像面临的挑战是需要良好的时间分辨率来捕获示踪剂动力学
性能和良好的空间分辨率,用于可视化形态。MRI中的传统动态方法
在每个时间点获取不完整的k空间数据,并使用k空间时间插值(或数据共享)
以在傅立叶重建之前形成“完整的”k空间数据集。我们建议研究基于模型的
通过估计对象模型参数来避免k空间插值的图像重建方法
最适合可用的k空间数据。这些重建方法将包括并行成像
技术.它们也将被扩展,以考虑由于患者在手术过程中的运动而引起的非刚性变形。
扫描使用新的方法联合估计运动参数和图像强度参数。的
将使用计算机模拟、体模研究和人体DCE-MRI扫描数据对方法进行评价。
人类数据将作为项目1的一部分收集,包括乳腺癌的DCE-MRI扫描
接受新辅助化疗的患者,其中肿瘤缓解的早期预测具有临床意义
重要性所提出的方法有可能提高乳腺DCE-MRI和
以及其他动态MR应用。
相关性(参见说明):
这项研究与公共卫生的相关性在于,通过更多的方法来提高MR图像的质量。
复杂的数据处理可能会导致乳腺癌患者的更准确的诊断和治疗,
癌症和其他疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY A FESSLER其他文献
JEFFREY A FESSLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY A FESSLER', 18)}}的其他基金
Fast Functional MRI with Sparse Sampling and Model-Based Reconstruction
具有稀疏采样和基于模型的重建的快速功能 MRI
- 批准号:
9228804 - 财政年份:2017
- 资助金额:
$ 26.41万 - 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
- 批准号:
8732318 - 财政年份:2014
- 资助金额:
$ 26.41万 - 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
- 批准号:
9110719 - 财政年份:2014
- 资助金额:
$ 26.41万 - 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
- 批准号:
8293142 - 财政年份:2010
- 资助金额:
$ 26.41万 - 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
- 批准号:
8119605 - 财政年份:2010
- 资助金额:
$ 26.41万 - 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
- 批准号:
7985583 - 财政年份:2010
- 资助金额:
$ 26.41万 - 项目类别:
2008 IEEE International Symposium on Biomedical Imaging (ISBI)
2008年IEEE国际生物医学成像研讨会(ISBI)
- 批准号:
7484665 - 财政年份:2008
- 资助金额:
$ 26.41万 - 项目类别:
2007 International Symposium on Biomedical Imaging (ISBI)
2007年生物医学成像国际研讨会(ISBI)
- 批准号:
7276953 - 财政年份:2007
- 资助金额:
$ 26.41万 - 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
- 批准号:
8234847 - 财政年份:2002
- 资助金额:
$ 26.41万 - 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
- 批准号:
8445394 - 财政年份:2002
- 资助金额:
$ 26.41万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26.41万 - 项目类别:
Continuing Grant














{{item.name}}会员




