Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of

动态对比增强 MR 成像的图像重建

基本信息

项目摘要

Seeinstructions): Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of breast cancer patients has shown considerable promise in aiding diagnoses of breast lesions and characterizing treatment response. The challenge in DCE breast imaging is the need for both good temporal resolution to capture tracer kinetic properties and good spatial resolution for visualizing morphology. Traditional dynamic methods in MRI acquire incomplete k-space data at each time point, and use k-space temporal interpolation (or data sharing) to form "complete" k-space datasets prior to Fourier reconstruction. We propose to investigate model-based image reconstruction methods that avoid k-space interpolation by estimating the object model parameters that best fit the available k-space data. These reconstruction methods will incorporate parallel imaging techniques. They will also be extended to account for nonrigid deformations due to patient motion during the scan using novel methods for joint estimation of motion parameters and image intensity parameters. The methods will be evaluated using computer simulations, phantom studies, and human DCE-MRI scan data. The human data will be collected as part of Project 1 and will include DCE-MRI scans of breast cancer patients undergoing neoadjuvant chemotherapy, where early prediction of tumor response is of clinical importance. The proposed methods have the potential to improve image quality both in breast DCE-MRI as well as other dynamic MR applications. RELEVANCE (See instructions): The relevance of this research to public health is that improving the quality of MR images through more sophisticated data processing may lead to more accurate diagnosis and treatment of patients with breast cancer and other diseases.
Seeinstructions):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY A FESSLER其他文献

JEFFREY A FESSLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY A FESSLER', 18)}}的其他基金

Fast Functional MRI with Sparse Sampling and Model-Based Reconstruction
具有稀疏采样和基于模型的重建的快速功能 MRI
  • 批准号:
    9228804
  • 财政年份:
    2017
  • 资助金额:
    $ 26.41万
  • 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
  • 批准号:
    8732318
  • 财政年份:
    2014
  • 资助金额:
    $ 26.41万
  • 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
  • 批准号:
    9110719
  • 财政年份:
    2014
  • 资助金额:
    $ 26.41万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    8293142
  • 财政年份:
    2010
  • 资助金额:
    $ 26.41万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    8119605
  • 财政年份:
    2010
  • 资助金额:
    $ 26.41万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    7985583
  • 财政年份:
    2010
  • 资助金额:
    $ 26.41万
  • 项目类别:
2008 IEEE International Symposium on Biomedical Imaging (ISBI)
2008年IEEE国际生物医学成像研讨会(ISBI)
  • 批准号:
    7484665
  • 财政年份:
    2008
  • 资助金额:
    $ 26.41万
  • 项目类别:
2007 International Symposium on Biomedical Imaging (ISBI)
2007年生物医学成像国际研讨会(ISBI)
  • 批准号:
    7276953
  • 财政年份:
    2007
  • 资助金额:
    $ 26.41万
  • 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
  • 批准号:
    8234847
  • 财政年份:
    2002
  • 资助金额:
    $ 26.41万
  • 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
  • 批准号:
    8445394
  • 财政年份:
    2002
  • 资助金额:
    $ 26.41万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了