Accelerated statistical image reconstruction methods for X-ray CT

X射线CT加速统计图像重建方法

基本信息

  • 批准号:
    8732318
  • 负责人:
  • 金额:
    $ 50.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Accelerated statistical image reconstruction methods for X-ray CT X-ray CT provides valuable imaging information for numerous medical applications. Increasing use of CT scans con- tributes significantly to population radiation dose. Decreasing X-ray CT dose will require advances in data acquisition, image reconstruction, post processing, changes in acquisition protocols, and elimination of unneeded scans. Statistical image re- construction (SIR) methods have been used routinely in nuclear medicine imaging for over a decade and have begun to be applied to reduced dose clinical X-ray CT scans. The types of SIR methods that are likely to be most suitable for sub-mSv CT scans use accurate models for the physics and statistics of X-ray CT systems; these methods have required very long computation times that impede their routine clinical use. The primary goal of this project is to develop significantly faster SIR algorithms that will enable routine use of SIR methods for all types of CT scans, particularly sub-mSv scans. The methods developed will be applicable to a wide variety of image acquisition geometries and statistical cost functions, and thus will complement advances in these components by other researchers. Achieving significant acceleration of SIR requires much more than simply waiting for advances in computer technology. Clock frequencies are no longer increasing, and advances in CT technology (e.g., dual energy, dual sources, and wider cone angles) continue to increase CT data sizes. Traditional SIR algorithms have been designed mathematically with little consideration of modern computing architectures. In this project, imaging scientists and computer scientists will collaborate to develop, implement, and evaluate SIR algorithms that are tailored to modern many-core computing systems that provide parallelism at multiple scales (instruction level, core level, and node level). The goal is to achieve SIR compute times of less than 5 minutes for routine helical chest CT scans at sub-mSv doses, to enable universal use of SIR methods. The methods developed will benefit all anatomic imaging sites, clinical applications, and patient populations. This project's investigation will focus on a large collection of patient lung nodule C scans that were acquired at the University of Michigan at both 80% and 20% of the usual 40-80 mA (depending on patient size) tube currents for such scans. The 80% dose scans are typically in the 1-1.5 mSv range whereas the 20% dose scans are in the 0.25-0.4 mSv range. The archived sinograms in this collection provide a unique and valuable resource for investigating sub-mSv chest CT and for comparing to regular dose chest CT scans. Both numerical observer studies and radiologist observer studies will evaluate detection performance and morphological characterization of lung nodules with advanced SIR methods at sub-mSv doses. These lung studies are particularly timely in light of the recent USPSTF draft recommendation [1, 2] that is likely to lead to substantial increased use of annual CT exams for patients at risk of lung cancer.
描述(由申请人提供):x射线CT的加速统计图像重建方法x射线CT为许多医学应用提供了有价值的成像信息。CT扫描使用的增加对人群辐射剂量有显著影响。减少x射线CT剂量需要在数据采集、图像重建、后处理、采集方案的改变以及消除不必要的扫描方面取得进展。统计图像重建(SIR)方法已在核医学成像中常规应用了十多年,并已开始应用于临床低剂量x射线CT扫描。可能最适合亚msv CT扫描的SIR方法类型使用精确的x射线CT系统的物理和统计模型;这些方法需要很长的计算时间,阻碍了它们的常规临床应用。该项目的主要目标是开发更快的SIR算法,使SIR方法能够用于所有类型的CT扫描,特别是亚msv扫描。所开发的方法将适用于各种各样的图像采集几何形状和统计成本函数,因此将补充其他研究人员在这些组成部分的进展。要实现SIR的显著加速,需要的不仅仅是等待计算机技术的进步。时钟频率不再增加,CT技术的进步(例如,双能量、双源和更宽的锥角)继续增加CT数据量。传统SIR算法是用数学方法设计的,很少考虑现代计算体系结构。在该项目中,成像科学家和计算机科学家将合作开发、实施和评估SIR算法,这些算法适用于在多个尺度(指令级、核心级和节点级)上提供并行性的现代多核计算系统。目标是在亚毫西弗剂量下实现常规螺旋胸部CT扫描的SIR计算时间少于5分钟,从而实现SIR方法的普遍使用。所开发的方法将使所有解剖成像部位、临床应用和患者群体受益。该项目的研究将集中在密歇根大学获得的大量患者肺结节C扫描,这些扫描在通常的40-80 mA(取决于患者大小)管电流的80%和20%下进行。80%剂量扫描通常在1-1.5毫西弗范围内,而20%剂量扫描在0.25-0.4毫西弗范围内。该集合中的存档图像为研究亚毫西弗胸部CT以及与常规剂量胸部CT扫描进行比较提供了独特而有价值的资源。数值观测者研究和放射科观测者研究将评估在亚毫西弗剂量下使用先进SIR方法检测肺结节的性能和形态学特征。鉴于最近的USPSTF建议草案[1,2],这些肺部研究尤其及时,这可能导致肺癌风险患者年度CT检查的使用量大幅增加。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY A FESSLER其他文献

JEFFREY A FESSLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY A FESSLER', 18)}}的其他基金

Fast Functional MRI with Sparse Sampling and Model-Based Reconstruction
具有稀疏采样和基于模型的重建的快速功能 MRI
  • 批准号:
    9228804
  • 财政年份:
    2017
  • 资助金额:
    $ 50.85万
  • 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
  • 批准号:
    9110719
  • 财政年份:
    2014
  • 资助金额:
    $ 50.85万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    8293142
  • 财政年份:
    2010
  • 资助金额:
    $ 50.85万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    8119605
  • 财政年份:
    2010
  • 资助金额:
    $ 50.85万
  • 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
  • 批准号:
    7985583
  • 财政年份:
    2010
  • 资助金额:
    $ 50.85万
  • 项目类别:
2008 IEEE International Symposium on Biomedical Imaging (ISBI)
2008年IEEE国际生物医学成像研讨会(ISBI)
  • 批准号:
    7484665
  • 财政年份:
    2008
  • 资助金额:
    $ 50.85万
  • 项目类别:
2007 International Symposium on Biomedical Imaging (ISBI)
2007年生物医学成像国际研讨会(ISBI)
  • 批准号:
    7276953
  • 财政年份:
    2007
  • 资助金额:
    $ 50.85万
  • 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
  • 批准号:
    8037107
  • 财政年份:
    2002
  • 资助金额:
    $ 50.85万
  • 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
  • 批准号:
    8234847
  • 财政年份:
    2002
  • 资助金额:
    $ 50.85万
  • 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
  • 批准号:
    8445394
  • 财政年份:
    2002
  • 资助金额:
    $ 50.85万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 50.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了