Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
基本信息
- 批准号:8293142
- 负责人:
- 金额:$ 59.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsArchitectureBehaviorBenchmarkingBlindedClinicalComputer SimulationComputersDataDiagnosisDiagnosticDiseaseDoseDrug FormulationsElectronicsEquilibriumEvaluationFeedbackGoalsHumanImageImage AnalysisLungLung diseasesLung noduleMammary Gland ParenchymaMapsMeasurementMeasuresMemoryMethodsMetricModelingMorphologic artifactsMotionNoduleNoisePatientsPatternPerformancePhotonsPhysicsProcessPublic HealthRadiationRampRelative (related person)ResearchResolutionRoentgen RaysScanningSourceSpiral Computed TomographyStatistical ModelsSystemTechniquesTimeTomography, Computed, ScannersTubeUpdateWidthX-Ray Computed TomographyX-Ray Computed Tomography Scannersbasedesignimage reconstructionimprovedlung imagingnovelphysical modelpublic health relevancequantumradiologistreconstructionshared memorysimulationstatisticsstemtool
项目摘要
DESCRIPTION (provided by applicant): Model-Based Image Reconstruction for X-ray CT in Lung Imaging Modern X-ray computed tomography (CT) systems provide high-quality images for diagnosing numerous conditions including a variety of lung diseases. Unfortunately, technological advances in CT imaging have been accompanied by significant increases in X-ray radiation dose to patients. There is growing concern about the public health consequences of such doses. Furthermore, even with typical levels of radiation dose, current X-ray CT images have suboptimal image quality due to the limitations of the traditional image reconstruction algorithms used in clinical systems. We propose to develop, implement, analyze and evaluate model-based image reconstruction (MBIR) methods for X-ray CT to improve image quality in lung imaging and to reduce patient dose. Unlike commercially available denoising methods, the proposed MBIR methods are based on accurate models for the physics and statistics of X-ray CT systems. The methods will use edge-preserving regularization that is tailored to lung scans to control noise while improving spatial resolution. We will develop techniques for accelerating the iterative algorithms used in MBIR methods. The methods will be evaluated using computer simulations, phantom studies, and human studies. Specifically, we will focus here on lung CT applications, including morphological characterization of lung nodules and assessment of pulmonary diseases. The clinical impact of MBIR methods will be studied using automated lung image analysis tools and radiologist observer studies.
PUBLIC HEALTH RELEVANCE: The relevance of this research to public health is that we will develop and evaluate sophisticated techniques for processing the raw data measured by X-ray CT scanners to dramatically reduce the X-ray radiation dose to patients and to further improve the image quality in lung CT imaging for more accurate diagnosis and treatment.
描述(由申请人提供):用于肺部成像中的X射线CT的基于模型的图像重建现代X射线计算机断层摄影(CT)系统提供用于诊断包括各种肺部疾病的多种状况的高质量图像。不幸的是,CT成像的技术进步伴随着对患者的X射线辐射剂量的显著增加。人们越来越担心这种剂量的公共健康后果。此外,即使具有典型的辐射剂量水平,由于临床系统中使用的传统图像重建算法的限制,当前的X射线CT图像也具有次优的图像质量。 我们建议开发,实施,分析和评估基于模型的图像重建(MBIR)方法的X射线CT,以提高图像质量在肺部成像,并减少病人的剂量。与商业上可用的去噪方法不同,所提出的MBIR方法基于X射线CT系统的物理和统计的精确模型。该方法将使用针对肺部扫描定制的边缘保持正则化来控制噪声,同时提高空间分辨率。我们将开发用于加速MBIR方法中使用的迭代算法的技术。将使用计算机模拟、体模研究和人体研究对这些方法进行评价。具体来说,我们将集中在肺部CT应用,包括肺结节的形态特征和肺部疾病的评估。将使用自动肺部图像分析工具和放射科医生观察员研究来研究MBIR方法的临床影响。
公共卫生关系:这项研究与公共卫生的相关性在于,我们将开发和评估用于处理X射线CT扫描仪测量的原始数据的复杂技术,以大幅降低患者的X射线辐射剂量,并进一步提高肺部CT成像的图像质量,以实现更准确的诊断和治疗。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction.
- DOI:10.1109/tmi.2011.2175233
- 发表时间:2012-03
- 期刊:
- 影响因子:10.6
- 作者:Ramani S;Fessler JA
- 通讯作者:Fessler JA
Accelerating ordered subsets image reconstruction for X-ray CT using spatially nonuniform optimization transfer.
- DOI:10.1109/tmi.2013.2266898
- 发表时间:2013-11
- 期刊:
- 影响因子:10.6
- 作者:Kim D;Pal D;Thibault JB;Fessler JA
- 通讯作者:Fessler JA
ALGORITHMS FOR AREA PRESERVING FLOWS.
- DOI:10.1137/100815542
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Kublik C;Esedoḡlu S;Fessler JA
- 通讯作者:Fessler JA
Forward-Projection Architecture for Fast Iterative Image Reconstruction in X-ray CT.
- DOI:10.1109/tsp.2012.2208636
- 发表时间:2012-10
- 期刊:
- 影响因子:0
- 作者:Kim JK;Fessler JA;Zhang Z
- 通讯作者:Zhang Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY A FESSLER其他文献
JEFFREY A FESSLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY A FESSLER', 18)}}的其他基金
Fast Functional MRI with Sparse Sampling and Model-Based Reconstruction
具有稀疏采样和基于模型的重建的快速功能 MRI
- 批准号:
9228804 - 财政年份:2017
- 资助金额:
$ 59.23万 - 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
- 批准号:
8732318 - 财政年份:2014
- 资助金额:
$ 59.23万 - 项目类别:
Accelerated statistical image reconstruction methods for X-ray CT
X射线CT加速统计图像重建方法
- 批准号:
9110719 - 财政年份:2014
- 资助金额:
$ 59.23万 - 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
- 批准号:
8119605 - 财政年份:2010
- 资助金额:
$ 59.23万 - 项目类别:
Model-Based Image Reconstruction for X-ray CT in Lung Imaging
肺部成像中基于模型的 X 射线 CT 图像重建
- 批准号:
7985583 - 财政年份:2010
- 资助金额:
$ 59.23万 - 项目类别:
2008 IEEE International Symposium on Biomedical Imaging (ISBI)
2008年IEEE国际生物医学成像研讨会(ISBI)
- 批准号:
7484665 - 财政年份:2008
- 资助金额:
$ 59.23万 - 项目类别:
2007 International Symposium on Biomedical Imaging (ISBI)
2007年生物医学成像国际研讨会(ISBI)
- 批准号:
7276953 - 财政年份:2007
- 资助金额:
$ 59.23万 - 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
- 批准号:
8037107 - 财政年份:2002
- 资助金额:
$ 59.23万 - 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
- 批准号:
8234847 - 财政年份:2002
- 资助金额:
$ 59.23万 - 项目类别:
Image Reconstruction for Dymanic Contrast-Enhanced MR Imaging of
动态对比增强 MR 成像的图像重建
- 批准号:
8445394 - 财政年份:2002
- 资助金额:
$ 59.23万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.23万 - 项目类别:
Research Grant














{{item.name}}会员




