Strategies to Predict and Prevent In-Hospital Cardiac Arrest

预测和预防院内心脏骤停的策略

基本信息

  • 批准号:
    8103985
  • 负责人:
  • 金额:
    $ 12.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In-hospital cardiac arrest (IHCA) is a significant public health concern, afflicting an estimated 370,000- 750,000 patients annually, with survival rates generally below 20%. Over half of these patients are known to display signs of clinical deterioration in the hours leading up to the arrest. Rapid Response Systems (RRSs), designed to respond to patients in the early stages of clinical deterioration, have been surprisingly underwhelming with regards to preventing IHCA and death, leading some policy makers and researchers to suggest failures to identify the signs of early clinical deterioration or to call for help as possible etiologies. One possible solution to this problem is the development of a risk prediction tool that could be used to accurately stratify patients based on their likelihood of impending IHCA or ICU transfer, allowing interventions to be targeted at high risk patients. Several physiology-based scoring systems, which assign point values to abnormal vital signs, have been proposed but their mediocre predictive ability and cumbersome nature have limited their adoption. We have developed a simple, single question, quantitative scale of clinical judgment regarding patient stability that predicts IHCA or ICU transfer within the next 24 hours. We propose to validate that tool in a larger sample of patients and compare it to two physiology-based prediction algorithms, in an attempt to find the most sensitive and specific predictor of impending clinical deterioration. We will then use the best of the three, or a combined measure if better, in order to identify high-risk non-ICU inpatients and target them for a RRS intervention that bypasses the need to identify deteriorating patients and call for help, thereby allowing a targeted assessment of the RRS in high risk patients. RELEVANCE (See instructions): Some cardiac arrests in the hospital may be preventable if the clinical warning signs can be identified and acted upon quickly. Since it is not practical to monitor every hospitalized patient at all times, strategies to determine which patients are at high risk would allow additional resources to be targeted specifically at those patients. (End of Abstract)
描述(由申请人提供):住院心脏骤停(IHCA)是一个重要的公共卫生问题,估计每年有37万至75万名患者受到影响,存活率一般低于20%。已知这些患者中有一半以上在被捕前的几个小时内表现出临床恶化的迹象。快速反应系统(RRS)旨在对临床恶化的早期阶段的患者做出反应,但在预防IHCA和死亡方面却出人意料地平淡无奇,导致一些政策制定者和研究人员建议未能识别早期临床恶化的迹象或呼吁帮助作为可能的病因。这一问题的一个可能的解决方案是开发一种风险预测工具,该工具可用于根据患者即将进行IHCA或ICU转移的可能性对患者进行准确的分层,从而使干预措施能够针对高危患者。已经提出了几种基于生理学的评分系统,为异常生命体征分配积分值,但其平庸的预测能力和繁琐的性质限制了它们的采用。我们已经开发了一种简单的、单一问题的、关于患者稳定性的临床判断量化量表,它可以预测未来24小时内IHCA或ICU的转院情况。我们建议在更大的患者样本中验证该工具,并将其与两种基于生理学的预测算法进行比较,试图找到对即将到来的临床恶化最敏感和最特异的预测因子。然后,我们将使用三种方法中的最好一种,或者如果更好的话,综合使用这三种方法,以便识别高危非ICU住院患者,并针对他们进行RRS干预,从而绕过识别病情恶化的患者和寻求帮助的需要,从而对高危患者的RRS进行有针对性的评估。相关性(见说明书):如果能够识别临床警告信号并迅速采取行动,医院的一些心脏骤停可能是可以预防的。由于始终监测每一位住院患者并不现实,因此确定哪些患者处于高危状态的战略将使额外的资源能够专门针对这些患者。(摘要结束)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dana Peres Edelson其他文献

Dana Peres Edelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dana Peres Edelson', 18)}}的其他基金

Opening The Black Box: Enhancing Machine Learning Interpretability To Optimize Clinical Response To Sudden Deterioration In COVID-19 Patients
打开黑匣子:增强机器学习的可解释性,以优化对 COVID-19 患者突然恶化的临床反应
  • 批准号:
    10259197
  • 财政年份:
    2021
  • 资助金额:
    $ 12.96万
  • 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
  • 批准号:
    8290431
  • 财政年份:
    2009
  • 资助金额:
    $ 12.96万
  • 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
  • 批准号:
    7923859
  • 财政年份:
    2009
  • 资助金额:
    $ 12.96万
  • 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
  • 批准号:
    7713699
  • 财政年份:
    2009
  • 资助金额:
    $ 12.96万
  • 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
  • 批准号:
    8505021
  • 财政年份:
    2009
  • 资助金额:
    $ 12.96万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 12.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了