Opening The Black Box: Enhancing Machine Learning Interpretability To Optimize Clinical Response To Sudden Deterioration In COVID-19 Patients
打开黑匣子:增强机器学习的可解释性,以优化对 COVID-19 患者突然恶化的临床反应
基本信息
- 批准号:10259197
- 负责人:
- 金额:$ 199.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-03-21
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdoptionAdultAlgorithmsCOVID-19COVID-19 patientChicagoClinicalData SetDeteriorationDevelopmentEffectivenessElectronic Health RecordEnsureEvaluationExpert OpinionGoalsHealth PersonnelHealthcareHemorrhageHospitalsHumanIndividualInterventionInterviewLogicLogistic RegressionsMachine LearningMeasuresMedical StaffModelingMulticenter TrialsNaturePatient-Focused OutcomesPatientsPhasePredictive AnalyticsProcessProviderRelative RisksRespiratory FailureRetrospective cohortRiskRisk ReductionRunningSepsisShockSmall Business Innovation Research GrantSystemTestingTimeTrustUniversitiesUser-Computer InterfaceValidationVisualizationWeightWorkloadbaseclinical decision supportclinical implementationclinical practicedesigndistrustexperiencehemodynamicsimprovedimproved outcomeinsightmachine learning algorithmmortalitynovelpandemic diseasepredict clinical outcomeprediction algorithmpredictive modelingprospectiveresponsesatisfactionsepticsimulationstandard carestandard of caretooltrenduptakeusability
项目摘要
Project Summary/Abstract
Advanced machine learning (ML) has consistently been shown to outperform expert opinion and more simple
analytics for predicting clinical outcomes. However, there has been a paucity of successful prospective clinical
implementations of such tools. The unique barriers to advanced ML implementation and adoption in healthcare
are (1) the technological challenges of running and displaying these models in real-time within existing workflows
and (2) a general distrust for black box algorithms among highly skilled providers. As a result, the promise of
these tools is largely lost in healthcare. This is particularly problematic in COVID-19, where patients can
deteriorate rapidly, from appearing stable to suddenly being in respiratory failure or shock with little obvious
warning. Early recognition of this deterioration is vital to proactive interventions, which can improve outcomes.
eCART is a predictive analytic that has been developed iteratively at the University of Chicago over the past
decade to identify hospitalized patients at risk for acute clinical deterioration. A simple (logistic regression based)
ML model (eCARTv2) is commercially available within electronic health records on AgileMD’s clinical decision
support platform. eCARTv2 was developed in a retrospective multicenter dataset and its use in clinical practice
was associated with a 29% relative risk reduction in mortality in a multicenter trial. Our team recently completed
development and validation of a gradient boosted machine (GBM) version of the model (eCARTv4), using nearly
100 variables, including trends and interactions. The advanced ML model was significantly more accurate than
the simple ML and other models for predicting acute clinical deterioration across all hospital settings, in both
septic and non-septic patients as well as in COVID-19 patients. The next challenge is clinically implementing it.
The goals of this project are to a) upgrade the existing AgileMD platform to support the previously derived and
validated eCARTv4 model and overhaul the human-machine interface for an advanced user experience (UX)
that provides, for the first time, interpretable, graphical insight into the contribution of individual variables to a
real-time EHR-embedded advanced ML analytic, and b) measure the impact of the new tool on HCP
effectiveness, efficiency and satisfaction. We hypothesize that the combination of high accuracy and
interpretability afforded by the advanced ML and UX will result in earlier recognition of acute deterioration as well
as increased System Usability Scores (SUS) and usefulness scores in the treatment of deteriorating COVID-19
patients over standard care.
项目总结/摘要
先进的机器学习(ML)一直被证明优于专家意见,并且更简单。
用于预测临床结果的分析。然而,成功的前瞻性临床研究很少。
这些工具的使用。在医疗保健领域实施和采用高级ML的独特障碍
(1)在现有工作流程中实时运行和显示这些模型的技术挑战
以及(2)在高技能提供者中对黑盒算法的普遍不信任。因此,
这些工具在医疗保健中大量丢失。这在COVID-19中尤其成问题,患者可以
迅速恶化,从看似稳定到突然呼吸衰竭或休克,几乎没有明显的
警告及早认识到这种恶化对积极干预至关重要,这可以改善结果。
eCART是芝加哥大学过去反复开发的预测分析
十年来确定住院患者的急性临床恶化的风险。一个简单的(基于逻辑回归)
ML模型(eCARTv 2)已在AgileMD临床决策的电子健康记录中上市
支持平台。eCARTv 2是在回顾性多中心数据集中开发的,并在临床实践中使用
在一项多中心试验中,与死亡率29%的相对风险降低相关。我们的团队最近完成了
开发和验证梯度增强机(GBM)版本的模型(eCARTv 4),使用近
100个变量,包括趋势和相互作用。先进的ML模型明显比
简单的ML和其他模型用于预测所有医院环境中的急性临床恶化,
脓毒症和非脓毒症患者以及COVID-19患者。下一个挑战是临床应用。
该项目的目标是:a)升级现有的AgileMD平台,以支持以前衍生的
经过验证的eCARTv 4模型,并彻底改造人机界面,以获得高级用户体验(UX)
这是第一次提供了可解释的图形化洞察力,以了解单个变量对
实时EHR嵌入式高级ML分析,以及B)测量新工具对HCP的影响
有效性、效率和满意度。我们假设,高准确性和
先进的ML和UX提供的可解释性也将导致对急性恶化的早期识别
在治疗不断恶化的COVID-19中,系统可用性评分(SUS)和有用性评分增加
患者的标准护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dana Peres Edelson其他文献
Dana Peres Edelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dana Peres Edelson', 18)}}的其他基金
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
8290431 - 财政年份:2009
- 资助金额:
$ 199.6万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
7923859 - 财政年份:2009
- 资助金额:
$ 199.6万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
7713699 - 财政年份:2009
- 资助金额:
$ 199.6万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
8103985 - 财政年份:2009
- 资助金额:
$ 199.6万 - 项目类别:
Strategies to Predict and Prevent In-Hospital Cardiac Arrest
预测和预防院内心脏骤停的策略
- 批准号:
8505021 - 财政年份:2009
- 资助金额:
$ 199.6万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 199.6万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 199.6万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 199.6万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 199.6万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 199.6万 - 项目类别:
Standard Grant