USING MACHINE LEARNING TO SPEED UP MANUAL IMAGE ANNOTATION

使用机器学习加速手动图像注释

基本信息

  • 批准号:
    8171453
  • 负责人:
  • 金额:
    $ 0.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Background Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing) is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. Results: In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions) and train an SVM classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. Conclusions: We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.
这个子项目是许多研究子项目中利用 资源由NIH/NCRR资助的中心拨款提供。子项目和 调查员(PI)可能从NIH的另一个来源获得了主要资金, 并因此可以在其他清晰的条目中表示。列出的机构是 该中心不一定是调查人员的机构。 背景图像分析是研究基因表达、细胞周期进程和蛋白质定位的许多生物学实验的重要组成部分。开发了一种追踪线虫单个基因表达的方法,该方法通过三维时间推移显微镜收集发育中的胚胎图像样本。在该协议中,一个名为StarryNite的程序执行对荧光标记细胞的自动识别并追踪它们的谱系。然而,由于数据中存在的大量噪声,以及由于在开发的后期阶段增加单元数量所带来的挑战,该程序并非没有错误。在当前版本中,纠错(即编辑)是使用专门为这项任务开发的名为AceTree的图形界面工具手动执行的。对于单个实验,这项手动注释任务需要几个小时。 结果:在本文中,我们减少了纠正StarryNite错误所需的时间。我们针对最频繁的错误类型之一(标记为分区的移动)训练支持向量机分类器,以确定StarryNite进行的分区调用是否正确。通过在几个基准数据集上的交叉验证实验,我们证明了支持向量机能够显著地识别这种类型的错误。新版StarryNite包括训练好的支持向量机分类器,可在http://starrynite.sourceforge.net.上获得 结论:我们演示了机器学习方法在StarryNite错误标注中的实用性。在这个过程中,我们还提供了一些通用的方法来开发和验证关于给定模式识别任务的分类器。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT H WATERSTON其他文献

ROBERT H WATERSTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT H WATERSTON', 18)}}的其他基金

High throughput methods for Synthetic Genetic Array Analysis in C. elegans
线虫合成基因阵列分析的高通量方法
  • 批准号:
    8490069
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Creating Comprehensive Maps of Worm and Fly Transcription Factor Binding Sites
创建蠕虫和苍蝇转录因子结合位点的综合图谱
  • 批准号:
    8737930
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Creating Comprehensive Maps of Worm and Fly Transcription Factor Binding Sites
创建蠕虫和苍蝇转录因子结合位点的综合图谱
  • 批准号:
    8904695
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Creating Comprehensive Maps of Worm and Fly Transcription Factor Binding Sites
创建蠕虫和苍蝇转录因子结合位点的综合图谱
  • 批准号:
    9526117
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Creating Comprehensive Maps of Worm and Fly Transcription Factor Binding Sites
创建蠕虫和苍蝇转录因子结合位点的综合图谱
  • 批准号:
    8566279
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Creating Comprehensive Maps of Worm and Fly Transcription Factor Binding Sites
创建蠕虫和苍蝇转录因子结合位点的综合图谱
  • 批准号:
    9119534
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
High throughput methods for Synthetic Genetic Array Analysis in C. elegans
线虫合成基因阵列分析的高通量方法
  • 批准号:
    8653976
  • 财政年份:
    2013
  • 资助金额:
    $ 0.05万
  • 项目类别:
Comprehensive Identification of Worm and Fly Transcription Factor Binding Sites
蠕虫和苍蝇转录因子结合位点的综合鉴定
  • 批准号:
    8402441
  • 财政年份:
    2012
  • 资助金额:
    $ 0.05万
  • 项目类别:
A genome-wide mutation resource for C. elegans
线虫全基因组突变资源
  • 批准号:
    7853828
  • 财政年份:
    2010
  • 资助金额:
    $ 0.05万
  • 项目类别:
Global Identification of transcribed elements in the C. elegans genome
线虫基因组中转录元件的整体鉴定
  • 批准号:
    7923469
  • 财政年份:
    2009
  • 资助金额:
    $ 0.05万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.05万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了