Quantitative SPECT for Targeted Radionuclide Therapy

用于靶向放射性核素治疗的定量 SPECT

基本信息

  • 批准号:
    8205584
  • 负责人:
  • 金额:
    $ 39.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Targeted radionuclide therapy (TRT) plays an increasingly important role in treatment of a number of cancers including thyroid cancer and non-Hodgkins lymphoma. TRT agents for other cancers are at various stages of development. For example, locoregional therapy using Y-90 labeled microspheres for non-resectable liver tumors appears promising. For these therapies, dosimetry is an essential part of their development, approval, and validation. Dosimetry can help reduce adverse reactions in trials and provides insight into the reasons for failure or success of the therapeutic agents both in individuals and in populations. It also plays an important role in patient-specific treatment planning. Dose estimates in TRT are based on results of quantitative planar or SPECT imaging studies. Quantitative planar imaging, though widely used, involves ad hoc combinations of compensations for various image degrading effects, resulting in variable accuracy and precision. Image reconstruction methods available on commercial SPECT systems are typically designed and optimized for diagnostic procedures involving visual interpretation and not for quantification. In the previous funding period of this grant we developed quantitative SPECT reconstruction methods and validated them in the context of whole organ dosimetry. However, for tumors, locoregional therapy or radiolabeled peptides, 3D dosimetry is essential, which requires estimates of the 3D activity distribution in organs at the sub-organ level. The accuracy of activity distribution estimates is limited by image degrading factors, noise, and partial volume effects. The ability to image bremsstrahlung radiation from TRT agents that do not emit gamma rays could have a number of important applications, but is complicated by the continuous energy spectrum of primary photons and the resulting high levels of photon scatter. In this competing renewal, we propose to develop and optimize quantitative SPECT acquisition and reconstruction methods for TRT dosimetry applications. These will include SPECT reconstruction methods that model the image degrading effects for both gamma ray and bremsstrahlung radiation emitters. They will use 3D and 4D maximum a posteriori (MAP) methods to provide noise reduction and incorporate anatomical information to reduce partial volume effects. The 4D methods will also provide further noise reduction through optimized smoothing in the time dimension and incorporate registration into the reconstruction algorithm. We propose to optimize and validate these new quantitative SPECT methods using a combination of physical phantom, realistic simulation and animal studies and to apply them in clinical trials of several TRT agents. Finally, we will rigorously evaluate the accuracy and precision of these methods in comparison with conventional methods in simulated populations of phantoms. The result of this research will be a set of well-validated quantitative SPECT reconstruction methods with well-characterized accuracies and precisions. These methods would provide substantial improvements in 3D dose estimates, and thus in the ability to predict and understand biological response and optimize therapeutic doses for TRT. PUBLIC HEALTH RELEVANCE: Reliable dosimetry of targeted radionuclide therapies (TRTs) for cancer could facilitate the development and approval of TRT agents and provide patient specific optimization for improved outcomes. The results of this research will provide reliable, well-validated and well-characterized quantitative imaging methods designed for TRT dosimetry applications that would provide the basis for more reliable dose estimates for improved cancer therapy outcomes.
描述(申请人提供):靶向放射性核素治疗(TRT)在治疗包括甲状腺癌和非霍奇金淋巴瘤在内的多种癌症中发挥着越来越重要的作用。用于其他癌症的TRT药物处于不同的开发阶段。例如,使用Y-90标记的微球用于不可切除的肝肿瘤的局部区域治疗似乎是有希望的。对于这些疗法,剂量测定是其开发、批准和验证的重要组成部分。剂量测定可以帮助减少试验中的不良反应,并深入了解治疗药物在个体和人群中失败或成功的原因。它还在患者特定的治疗计划中发挥重要作用。TRT中的剂量估计基于定量平面或SPECT成像研究的结果。定量平面成像尽管应用广泛,但涉及对各种图像退化效应的补偿的临时组合,导致准确度和精确度不同。商业SPECT系统上可用的图像重建方法通常被设计和优化用于涉及视觉解释的诊断程序,而不是用于量化。在此赠款的前一个资助期,我们开发了定量SPECT重建方法,并在整个器官剂量测定的背景下验证它们。然而,对于肿瘤、局部治疗或放射性标记的肽,3D剂量测定是必不可少的,这需要在亚器官水平上估计器官中的3D活性分布。活动分布估计的准确性受到图像退化因素、噪声和部分容积效应的限制。对来自不发射伽马射线的TRT试剂的韧致辐射成像的能力可以具有许多重要的应用,但是由于初级光子的连续能谱和由此产生的高水平光子散射而变得复杂。在这种竞争的更新,我们建议开发和优化定量SPECT采集和重建方法的TRT剂量学应用。这些将包括SPECT重建方法,模拟图像退化的影响,为伽马射线和韧致辐射发射器。他们将使用3D和4D最大后验(MAP)方法来提供降噪,并结合解剖信息来减少部分容积效应。4D方法还将通过时间维度上的优化平滑提供进一步的降噪,并将配准纳入重建算法。我们建议结合物理体模、真实模拟和动物研究来优化和验证这些新的定量SPECT方法,并将其应用于多种TRT试剂的临床试验中。最后,我们将严格评估这些方法的准确性和精密度与传统方法相比,在模拟人口的幻影。本研究的结果将是一组经过充分验证的定量SPECT重建方法,具有良好的特征化的准确性和精度。这些方法将在3D剂量估计方面提供实质性改进,并且因此在预测和理解生物反应以及优化TRT的治疗剂量的能力方面提供实质性改进。 公共卫生关系:癌症靶向放射性核素治疗(TRT)的可靠剂量测定可以促进TRT药物的开发和批准,并提供患者特异性优化以改善结局。这项研究的结果将提供可靠的,经过充分验证和充分表征的定量成像方法,旨在为TRT剂量测定应用提供更可靠的剂量估计基础,以改善癌症治疗结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERIC C. FREY其他文献

ERIC C. FREY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ERIC C. FREY', 18)}}的其他基金

Quantitative SPECT of Difficult to Image Therapeutic Radionuclides: An Extensible Cloud-Based Framework
难以成像的治疗性放射性核素的定量 SPECT:可扩展的基于云的框架
  • 批准号:
    9622938
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
  • 批准号:
    9909727
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
  • 批准号:
    10019481
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
Development and Validation of a Collaborative Web/Cloud-Based Dosimetry System for Radiopharmaceutical Therapy.
用于放射性药物治疗的协作网络/基于云的剂量测定系统的开发和验证。
  • 批准号:
    10249268
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
  • 批准号:
    8595309
  • 财政年份:
    2013
  • 资助金额:
    $ 39.34万
  • 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
  • 批准号:
    8775665
  • 财政年份:
    2013
  • 资助金额:
    $ 39.34万
  • 项目类别:
End-to-End Optimization of SPECT Instrumentation, Acquisition, and Reconstruction
SPECT 仪器、采集和重建的端到端优化
  • 批准号:
    8431490
  • 财政年份:
    2013
  • 资助金额:
    $ 39.34万
  • 项目类别:
Dose Reduction in Pediatric Molecular Imaging
儿科分子成像的剂量减少
  • 批准号:
    8432432
  • 财政年份:
    2012
  • 资助金额:
    $ 39.34万
  • 项目类别:
Dose Reduction in Pediatric Molecular Imaging
儿童分子成像的剂量减少
  • 批准号:
    9322669
  • 财政年份:
    2012
  • 资助金额:
    $ 39.34万
  • 项目类别:
Dose Reduction in Pediatric Molecular Imaging
儿童分子成像的剂量减少
  • 批准号:
    8235635
  • 财政年份:
    2012
  • 资助金额:
    $ 39.34万
  • 项目类别:

相似海外基金

A personalised approach to manage adverse reactions to CFTR modulator therapy in patients with cystic fibrosis
治疗囊性纤维化患者 CFTR 调节剂治疗不良反应的个性化方法
  • 批准号:
    MR/X00094X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Research Grant
Identifying genetic polymorphisms and elucidating polygenic architecture associated with adverse reactions due to rituximab
识别遗传多态性并阐明与利妥昔单抗不良反应相关的多基因结构
  • 批准号:
    22K15910
  • 财政年份:
    2022
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanistic study of sulfa drug-induced severe cutaneous adverse reactions by focusing on HLA-A*11:01
以HLA-A*为重点的磺胺类药物致严重皮肤不良反应机制研究11:01
  • 批准号:
    22K06738
  • 财政年份:
    2022
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
  • 批准号:
    449379
  • 财政年份:
    2020
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Studentship Programs
Significance of gamma-chain in severe cutaneous adverse reactions
伽马链在严重皮肤不良反应中的意义
  • 批准号:
    19K17779
  • 财政年份:
    2019
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Historical sociology of adverse reactions related to vaccination in Japan
日本疫苗接种不良反应的历史社会学
  • 批准号:
    18K00267
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SEARCH (active Surveillance and Evaluation of Adverse Reactions in Canadian Healthcare) & PREVENT (Pharmacogenomics of Adverse Reaction EVEnts National Team)
SEARCH(加拿大医疗保健不良反应的主动监测和评估)
  • 批准号:
    379425
  • 财政年份:
    2018
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Operating Grants
IGF::OT::IGF SBIR Phase II: Topic 338 - Predictive Biomarkers of Adverse Reactions to Prostrate Cancer Radiotherapy
IGF::OT::IGF SBIR II 期:主题 338 - 前列腺癌放射治疗不良反应的预测生物标志物
  • 批准号:
    9576448
  • 财政年份:
    2017
  • 资助金额:
    $ 39.34万
  • 项目类别:
Development of in silico prediction method for idiosyncratic adverse reactions associated with HLA genotypes
与 HLA 基因型相关的特殊不良反应的计算机预测方法的开发
  • 批准号:
    16K15156
  • 财政年份:
    2016
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Characterising the Immune Response to Drugs That Cause Idiosyncratic Adverse Reactions
表征对引起特殊不良反应的药物的免疫反应
  • 批准号:
    367156
  • 财政年份:
    2016
  • 资助金额:
    $ 39.34万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了