Contextual ASR to Support EHR Adoption
支持 EHR 采用的情境 ASR
基本信息
- 批准号:8253003
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-10 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionCharacteristicsCodeDataDocumentationDropsElectronic Health RecordElectronicsFamilyGenetic TranscriptionGoalsGrantHealthcareIndustryLanguageLibrariesManualsMedicalMedical RecordsMedical TechnologyMethodsModelingNatural Language ProcessingPatientsPatternPhasePhysiciansPositioning AttributePrimary Care PhysicianProbabilityProcessProductivityResearch InfrastructureSafetySmall Business Innovation Research GrantSolutionsSpeechStreamStructureSystemTechniquesTestingTextTimeTrainingUnited States National Institutes of HealthVariantVoiceWritingbasecostinnovationopen sourceoperationprogramsspeech recognitiontoolvoice recognition
项目摘要
DESCRIPTION (provided by applicant): The adoption of electronic health record (EHR) systems is a national healthcare priority. However studies show massive physician productivity drop of up to 25-40% upon transition to EHR. The majority of workflow delay is based on the need to perform manual operations to fill structured forms within the EHR, as opposed to simple unstructured narratives used in traditional written notes and transcriptions. Vanguard Medical Technologies (VMT), under NIH grant 1R43LM010750, proved feasibility for DocTalk, a real-time, speech-driven, open-source augmented, small practice encounter recording system that processes voice to text to structured medical data to EHR input, utilizing integrated automated speech recognition (ASR) and natural language processing (NLP) in the cloud. While NLP accuracy in Phase I was high, voice accuracy prior to physician review was inadequate. Fortunately, the tight integration of ASR and NLP combined with the formal structure of physician notes offers unique context based approaches to address the challenge. Current speech recognition methods use a single general-purpose medical lexicon to train a recognizer when identifying words. Medical context-specific probabilities are ignored. The four Specific Aims of this Phase I SBIR project are to: 1. Create a textual corpus for each section of a patient encounter note by processing 1 million text based narrative structured encounter notes 2. Build a family of Section-Specific Statistical Language Models (SS-SLMs) specialized in recognizing speech pertaining to each specific section of a patient encounter note, using industry standard open source statistical language modeling tools. 3. Use NLP techniques to infer patterns of language usage from text of each section, a. To detect section boundaries to be used as trigger words for invoking SS-SLMs b. To determine characteristic word distributions of each section 4. Assess improvement in accuracy per section due to use of SS-SLMs, with the goal of 50% overall reduction of errors compared to non-section-specific SLMs in the same medical dictation system.
PUBLIC HEALTH RELEVANCE: Successful completion of this innovative proposed program of NLP-enhanced context based ASR, will provide the accuracy required to deploy an integrated, interactive, intuitive, low-cost data entry system for small practice primary care physicians. The augmented DocTalk system will enable physicians to increase usable information, avoid third-party transcription errors, and mitigate workflow delays. Increased small practice EHR adoption directly addresses national healthcare goals.
描述(由申请人提供):采用电子健康记录(EHR)系统是国家医疗保健的优先事项。然而,研究表明,过渡到EHR后,大量医师生产率下降了25-40%。大多数工作流程延迟是基于需要执行手动操作以填充EHR内的结构化表格的需求,而不是传统的书面笔记和抄录中使用的简单的非结构化叙述。 Vanguard医疗技术(VMT),根据NIH授予的1R43LM010750,证明是可行性的,这是一种实时,语音驱动的,言语驱动,开放式,开放式,小型实践相遇记录系统,该系统将语音与结构化的医学数据相结合到EHR输入,利用集成的自动化语音识别(ASR)和自然语言(ASR)和NLP(NLP)。虽然第一阶段的NLP准确性很高,但在医师审查之前的语音精度不足。幸运的是,ASR和NLP的紧密整合与医师笔记的形式结构相结合,提供了基于上下文的独特方法来应对挑战。当前的语音识别方法在识别单词时使用单个通用医学词典来训练识别器。特定于医学上下文的概率被忽略。该第I阶段SBIR项目的四个具体目标是:1。通过处理100万个基于文本的叙事结构遭遇注释2。为患者遭遇注释的每个部分创建一个文本语料库。 3.使用NLP技术从每个部分的文本中推断出语言使用模式。要检测截面边界,用作调用SS-SLMS b的触发单词b。为了确定每个第4节的特征性单词分布。根据使用SS-SLMS的使用,评估每节的准确性提高,与同一医学义务系统中的非部分特异性SLM相比,错误的目标是50%的误差降低。
公共卫生相关性:成功完成基于NLP增强上下文ASR的创新拟议计划,将为小型初级保健医生提供部署集成,互动,直观,低成本数据输入系统所需的准确性。增强的医生系统将使医生能够增加可用信息,避免第三方转录错误并减轻工作流程延迟。小型实践EHR采用直接解决了国家医疗保健目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Jay Riskin其他文献
Daniel Jay Riskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Jay Riskin', 18)}}的其他基金
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10450726 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10256676 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
- 批准号:
10180783 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Enabling value-based healthcare through automating risk assessment for episode-based care
通过对基于事件的护理进行自动化风险评估,实现基于价值的医疗保健
- 批准号:
9464424 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Leveraging advanced clinical phenotyping to enhance problem lists and support value-based healthcare
利用先进的临床表型来增强问题清单并支持基于价值的医疗保健
- 批准号:
9762237 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Subgroup Analytics and Advanced Semantic Technologies to Enable Personalized Medicine
亚组分析和先进语义技术可实现个性化医疗
- 批准号:
8979535 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Voice Based, Workflow Enhancing, Primary Care Medical Data Input System
基于语音、增强工作流程的初级保健医疗数据输入系统
- 批准号:
7924457 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
采用多重降噪的颞骨CT特征库构建精准的中耳炎人工智能分类诊断系统
- 批准号:82301330
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用MR多模态成像显示肿瘤相关性胶原特征(TACS)研究胶原蛋白重组在肺癌浸润演进中的作用
- 批准号:81901692
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
采用“晶界特征分布”优化提升变压器铜绕组的抗油硫腐蚀性能研究
- 批准号:51677015
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
基于形态特征、药效物质及药理作用变化规律采用电子鼻建立苦杏仁“走油”预警机制及质量实时监测系统
- 批准号:81573542
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
采用同园实验研究青海沙蜥幼体种群间适应环境特征及其形成机制
- 批准号:31501860
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Towards Personalized Prosthetic Graft Replacement for Genetically Triggered Thoracic Aortic Aneurysms
针对基因触发的胸主动脉瘤的个性化假体移植
- 批准号:
10753115 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: