Voice Based, Workflow Enhancing, Primary Care Medical Data Input System

基于语音、增强工作流程的初级保健医疗数据输入系统

基本信息

  • 批准号:
    7924457
  • 负责人:
  • 金额:
    $ 24.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-15 至 2011-01-14
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The adoption of electronic health records (EHR) in hospitals and physician offices has been widely promoted as a single solution to a wide variety of health care issues. Yet 84% of small and medium business (SMB) physician practices in the US have not adopted EHR systems. Interventional Dynamics Corporation (IDC) has conducted more than 200 primary care physician interviews, finding that the major disincentives to adoption are workflow delay and expense. The single greatest factor in the reduction of workflow speed is the data input process. IDC's proposed project has this specific aim: Utilize an innovative voice entry technique and open source code systems to develop a low-cost, automated solution to allow primary care physicians to complete a primary care note entirely during the patient examination process. The narrative speech input will be analyzed in a context-sensitive, domain-restricted manner to produce structured clinical data that can be readily integrated into standards-compliant electronic medical records. By using speech inputs that are converted directly to relevant EHR entries, physicians can increase the accuracy of their notes, eliminate third party transcription errors and avoid workflow delays. The project approach will include: Further testing and final development of DocTalk, the IDC patent pending speech system that allows accurate natural language processing of structured medical information; Development of a proof-of-concept data system that converts physician voice input from voice to text to structured text to EHR data using domain enhanced open source code; The evaluation of the effectiveness of the proof-of-concept system against traditional EHR input methods with the following goals: Achieve 50% or more reduction in charting time, achieve 90% or more accuracy in output, and score greater than 4 of 5 on subjective metrics including learnability, workflow fit, usability, and overall satisfaction. Successful completion of the proposed program will provide IDC with a viable technology platform that can immediately be useful to primary care physicians in generating structured documents for use with their current EHR platforms. Furthermore, the technology developed and refined within this program can be expanded in multiple ways. PUBLIC HEALTH RELEVANCE: The IDC technology is designed to circumvent the normal barriers to adoption in the SMB market and allow for quick increases in workflow and quality of patient care at a minimal price point. IDC will provide physicians who currently use pen and paper a more natural and faster way to input clinical data, eliminating time spent on hunt-and-peck keyboard entry or complicated EHR screen navigation. The system will generate structured clinical data that enables the exchange of health information, the portability of patient records, billing, data analytics (both local practice and public health), marketing, and other benefits, resulting in the reduction of overall healthcare costs.
描述(由申请人提供):在医院和医师办公室中采用电子健康记录(EHR)已被广泛提升为各种医疗保健问题的一种解决方案。然而,美国有84%的中小型企业(SMB)医师实践尚未采用EHR系统。介入的动态公司(IDC)进行了200多次初级保健医师访谈,发现采用的主要抑制剂是工作流程延迟和费用。降低工作流程速度的最大因素是数据输入过程。 IDC提出的项目具有此特定目的:使用创新的语音输入技术和开源代码系统来开发低成本的自动化解决方案,以允许初级保健医生在患者检查过程中完全完成初级保健便条。叙事语音输入将以上下文敏感的,域限制的方式进行分析,以产生结构化的临床数据,这些数据可以很容易地集成到符合标准的电子病历中。通过使用直接转换为相关EHR条目的语音输入,医生可以提高音符的准确性,消除第三方转录错误并避免工作流程延迟。项目方法将包括: IDC专利申请语音系统的进一步测试和最终开发,允许精确的结构化医学信息处理;开发概念验证数据系统,该数据系统将医生语音输入从语音到文本转换为结构化文本,再使用域增强的开源代码来转换为结构化文本,再到EHR数据;评估概念验证系统对传统EHR输入方法的有效性,其目标有以下目标:在图表时间中缩短了50%或以上,在产出中获得90%或更高的准确性,并在5个中获得超过4分的主观指标,包括可学习性,工作流拟合度,可用性,可用性和整体满意度。拟议程序的成功完成将为IDC提供一个可行的技术平台,该平台可以立即对初级保健医生有用,以生成与当前EHR平台一起使用的结构化文档。此外,该计划中开发和完善的技术可以通过多种方式扩展。 公共卫生相关性:IDC技术旨在规避在SMB市场中采用的正常障碍,并可以快速提高工作流程和以最低价格的患者护理质量。 IDC将为目前使用笔和纸的医生一种更自然,更快的方法输入临床数据,从而消除了在狩猎和捕捉键盘进入或复杂的EHR屏幕导航上花费的时间。该系统将生成结构化的临床数据,以交换健康信息,患者记录的可移植性,计费,数据分析(当地实践和公共卫生),营销和其他收益,从而降低了整体医疗保健费用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Jay Riskin其他文献

Daniel Jay Riskin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Jay Riskin', 18)}}的其他基金

Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
  • 批准号:
    10450726
  • 财政年份:
    2020
  • 资助金额:
    $ 24.19万
  • 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
  • 批准号:
    10256676
  • 财政年份:
    2020
  • 资助金额:
    $ 24.19万
  • 项目类别:
Transforming Real-world evidence with Unstructured and Structured data to advance Tailored therapy (TRUST)
使用非结构化和结构化数据转换现实世界证据以推进定制治疗 (TRUST)
  • 批准号:
    10180783
  • 财政年份:
    2020
  • 资助金额:
    $ 24.19万
  • 项目类别:
Enabling value-based healthcare through automating risk assessment for episode-based care
通过对基于事件的护理进行自动化风险评估,实现基于价值的医疗保健
  • 批准号:
    9464424
  • 财政年份:
    2017
  • 资助金额:
    $ 24.19万
  • 项目类别:
Leveraging advanced clinical phenotyping to enhance problem lists and support value-based healthcare
利用先进的临床表型来增强问题清单并支持基于价值的医疗保健
  • 批准号:
    9762237
  • 财政年份:
    2016
  • 资助金额:
    $ 24.19万
  • 项目类别:
Subgroup Analytics and Advanced Semantic Technologies to Enable Personalized Medicine
亚组分析和先进语义技术可实现个性化医疗
  • 批准号:
    8979535
  • 财政年份:
    2015
  • 资助金额:
    $ 24.19万
  • 项目类别:
Contextual ASR to Support EHR Adoption
支持 EHR 采用的情境 ASR
  • 批准号:
    8253003
  • 财政年份:
    2012
  • 资助金额:
    $ 24.19万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
  • 批准号:
    10819933
  • 财政年份:
    2023
  • 资助金额:
    $ 24.19万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 24.19万
  • 项目类别:
ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
  • 批准号:
    10698810
  • 财政年份:
    2023
  • 资助金额:
    $ 24.19万
  • 项目类别:
Behavioral economics to implement a traffic light nutrition ranking system in a network of food pantries
行为经济学在食品储藏室网络中实施红绿灯营养排名系统
  • 批准号:
    10733657
  • 财政年份:
    2023
  • 资助金额:
    $ 24.19万
  • 项目类别:
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
  • 批准号:
    10640750
  • 财政年份:
    2023
  • 资助金额:
    $ 24.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了