The control of neural transmission by glycosylation
通过糖基化控制神经传递
基本信息
- 批准号:8162799
- 负责人:
- 金额:$ 31.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimal ModelAreaArrhythmiaBehavioralBiochemicalBiologicalBiological ModelsBiological ProcessBiologyBiomedical ResearchBrainCell AdhesionCell Culture TechniquesCellsComplexDataDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EnzymesEpilepsyFutureGenesGeneticGlycoproteinsGoalsHumanHuman bodyIndividualInvertebratesKnowledgeLightLinkLocomotionLongevityMediatingMicroscopyMolecularMotor NeuronsNervous system structureNeurologicNeuromuscular JunctionNeuronal PlasticityNeuronsNeurophysiology - biologic functionOrganParalysedPhenotypePhysiologyPlayPolysaccharidesPropertyRegulationResearchRoleSialic AcidsSialyltransferasesSpecificityStudy modelsSynapsesSynaptic TransmissionTechniquesTemperatureTestingTherapeuticchronic painflygenetic manipulationglycosylationmultidisciplinarynervous system developmentnervous system disorderneural circuitneurodevelopmentneuroregulationnew technologynovelnovel therapeuticspleiotropismprotein functionrelating to nervous systemresearch studysialylationtoolvoltagevoltage gated channel
项目摘要
DESCRIPTION (provided by applicant): Our research focuses on the molecular, cellular, and systemic mechanisms underlying the neural functions of glycoprotein sialylation. Although the brain is the organ with the most prominent sialylation in human body, and recent studies implicated sialylation defects in several neurological diseases, the functions of this important type of glycosylation in the nervous system are still poorly understood. The intricacies of glycosylation, increased pleiotropy and redundancy, and limitations of available genetic approaches significantly hinder the research on sialylation in the overwhelmingly complex vertebrate nervous system. Thus, a suitable model system would be an important tool for more efficient and accelerated studies in this area. Here we propose to use Drosophila as a model organism to investigate the neural functions of N-linked sialylation. We previously characterized Drosophila sialyltransferase, DSiaT, a sole sialyltransferase in Drosophila. This enzyme is highly homologous to its human counterpart which also shares with DSiaT several functional properties, including similar acceptor specificity and an elevated expression in the brain. Our recent experiments revealed that the function of sialylation in Drosophila is limited to the nervous system. We found that sialylation regulates neural transmission and the development of neuromuscular junctions. Abnormal sialylation results in Drosophila in prominent neurological phenotypes, including temperature-sensitive paralysis, defects in locomotion, and a significantly shortened life span. Our experiments indicated that a simple N-linked glycoprotein sialylation plays a prominent role in modulating neural activity, which establishes a new paradigm of the involvement of glycosylation in the nervous system regulation. This novel, nervous system-specific function of N-linked sialylated glycans is potentially conserved between flies and humans. The current project will extend our previous research and will investigate (i) the cellular mechanisms underlying the neural function of sialylation in Drosophila, (ii) the molecular mechanisms of sialylation-mediated control of neural excitability, and (iii) the role of sialylation in neural plasticity. We will use a multidisciplinary strategy, combining the advantages of Drosophila model system, including its exceptional amenability to genetic manipulations, exhaustively characterized neural development, low redundancy and pleiotropy of sialylation genes, with well-established electrophysiological and behavioral approaches, cell culture and biochemical techniques, as well as novel technologies for glycan analyses. This project will shed light on the crucial evolutionarily conserved principles of neural regulation and development, which could be useful for biomedical research and relevant therapeutic strategies. Our research will also establish Drosophila as a versatile model system for future studies of the role of glycosylation in the nervous system.
PUBLIC HEALTH RELEVANCE: Glycosylation modifies protein functions and profoundly affects the development and physiology of human brain. We will use Drosophila (fruit flies) as an experimentally amenable, genetically tractable and well-studied model organism to elucidate the important functions of glycosylation in the nervous system. Our research will shed light on biological mechanisms that may suggest novel therapeutic strategies for curing neurological diseases with abnormal neural excitability, including as epilepsy and chronic pain.
描述(由申请人提供):我们的研究重点是糖蛋白唾液酸化神经功能的分子,细胞和系统机制。虽然大脑是人体中唾液酸化最突出的器官,并且最近的研究表明唾液酸化缺陷与多种神经系统疾病有关,但对这种重要类型的糖基化在神经系统中的功能仍然知之甚少。糖基化的复杂性、增加的多效性和冗余性以及可用遗传方法的局限性显著阻碍了对极其复杂的脊椎动物神经系统中唾液酸化的研究。因此,一个适当的模型系统将是在这一领域进行更有效和更快研究的重要工具。在这里,我们建议使用果蝇作为一个模式生物调查的神经功能的N-连接唾液酸化。我们以前的特点是果蝇唾液酸转移酶,DSiaT,一个唯一的唾液酸转移酶在果蝇。这种酶与其人类对应物高度同源,其也与DSiaT共享几种功能特性,包括类似的受体特异性和在大脑中的表达升高。我们最近的实验表明,唾液酸化在果蝇中的功能仅限于神经系统。我们发现唾液酸化调节神经传递和神经肌肉接头的发育。异常唾液酸化导致果蝇的神经系统表现型显著,包括温度敏感性麻痹、运动缺陷和寿命显著缩短。我们的实验表明,一个简单的N-连接糖蛋白唾液酸化在调节神经活动中起着重要作用,这建立了一个新的范式糖基化参与神经系统的调节。N-连接唾液酸化聚糖的这种新的神经系统特异性功能在果蝇和人类之间可能是保守的。目前的项目将扩展我们以前的研究,并将调查(i)在果蝇唾液酸化的神经功能的细胞机制,(ii)唾液酸化介导的神经兴奋性控制的分子机制,和(iii)唾液酸化在神经可塑性的作用。我们将采用多学科策略,结合果蝇模型系统的优势,包括其对遗传操作的特殊适应性,详尽的神经发育特征,唾液酸化基因的低冗余和多效性,以及成熟的电生理和行为方法,细胞培养和生化技术,以及聚糖分析的新技术。该项目将揭示神经调节和发育的关键进化保守原则,这可能对生物医学研究和相关治疗策略有用。我们的研究也将建立果蝇作为一个多功能的模型系统,为未来的研究糖基化在神经系统中的作用。
公共卫生相关性:糖基化改变蛋白质功能,深刻影响人类大脑的发育和生理。我们将使用果蝇作为一个实验上可行的,遗传上易于处理的和充分研究的模式生物来阐明糖基化在神经系统中的重要功能。我们的研究将揭示生物学机制,这些机制可能为治疗具有异常神经兴奋性的神经系统疾病提出新的治疗策略,包括癫痫和慢性疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADISLAV M PANIN其他文献
VLADISLAV M PANIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADISLAV M PANIN', 18)}}的其他基金
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
10207792 - 财政年份:2017
- 资助金额:
$ 31.36万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
9384393 - 财政年份:2017
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8513429 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8702249 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8309155 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8894325 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
7942241 - 财政年份:2009
- 资助金额:
$ 31.36万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
6720264 - 财政年份:2004
- 资助金额:
$ 31.36万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.36万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Studentship