The control of neural transmission by glycosylation
通过糖基化控制神经传递
基本信息
- 批准号:8513429
- 负责人:
- 金额:$ 30.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimal ModelAreaArrhythmiaBehavioralBiochemicalBiologicalBiological ModelsBiological ProcessBiologyBiomedical ResearchBrainCell AdhesionCell Culture TechniquesCellsComplexDataDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EnzymesEpilepsyFutureGenesGeneticGlycoproteinsGoalsHumanHuman bodyIndividualInvertebratesKnowledgeLightLinkLocomotionLongevityMediatingMicroscopyMolecularMotor NeuronsNervous system structureNeurologicNeuromuscular JunctionNeuronal PlasticityNeuronsNeurophysiology - biologic functionOrganParalysedPhenotypePhysiologyPlayPolysaccharidesPropertyRegulationResearchRoleSialic AcidsSialyltransferasesSpecificityStudy modelsSynapsesSynaptic TransmissionTechniquesTemperatureTestingTherapeuticchronic painflygenetic manipulationglycosylationmultidisciplinarynervous system developmentnervous system disorderneural circuitneurodevelopmentneuroregulationnew technologynovelnovel therapeuticspleiotropismprotein functionrelating to nervous systemresearch studysialylationtoolvoltagevoltage gated channel
项目摘要
DESCRIPTION (provided by applicant): Our research focuses on the molecular, cellular, and systemic mechanisms underlying the neural functions of glycoprotein sialylation. Although the brain is the organ with the most prominent sialylation in human body, and recent studies implicated sialylation defects in several neurological diseases, the functions of this important type of glycosylation in the nervous system are still poorly understood. The intricacies of glycosylation, increased pleiotropy and redundancy, and limitations of available genetic approaches significantly hinder the research on sialylation in the overwhelmingly complex vertebrate nervous system. Thus, a suitable model system would be an important tool for more efficient and accelerated studies in this area. Here we propose to use Drosophila as a model organism to investigate the neural functions of N-linked sialylation. We previously characterized Drosophila sialyltransferase, DSiaT, a sole sialyltransferase in Drosophila. This enzyme is highly homologous to its human counterpart which also shares with DSiaT several functional properties, including similar acceptor specificity and an elevated expression in the brain. Our recent experiments revealed that the function of sialylation in Drosophila is limited to the nervous system. We found that sialylation regulates neural transmission and the development of neuromuscular junctions. Abnormal sialylation results in Drosophila in prominent neurological phenotypes, including temperature-sensitive paralysis, defects in locomotion, and a significantly shortened life span. Our experiments indicated that a simple N-linked glycoprotein sialylation plays a prominent role in modulating neural activity, which establishes a new paradigm of the involvement of glycosylation in the nervous system regulation. This novel, nervous system-specific function of N-linked sialylated glycans is potentially conserved between flies and humans. The current project will extend our previous research and will investigate (i) the cellular mechanisms underlying the neural function of sialylation in Drosophila, (ii) the molecular mechanisms of sialylation-mediated control of neural excitability, and (iii) the role of sialylation in neural plasticity. We will use a multidisciplinary strategy, combining the advantages of Drosophila model system, including its exceptional amenability to genetic manipulations, exhaustively characterized neural development, low redundancy and pleiotropy of sialylation genes, with well-established electrophysiological and behavioral approaches, cell culture and biochemical techniques, as well as novel technologies for glycan analyses. This project will shed light on the crucial evolutionarily conserved principles of neural regulation and development, which could be useful for biomedical research and relevant therapeutic strategies. Our research will also establish Drosophila as a versatile model system for future studies of the role of glycosylation in the nervous system.
描述(由申请人提供):我们的研究重点是糖蛋白唾液化神经功能的分子、细胞和系统机制。尽管大脑是人体中唾液基化最显著的器官,并且最近的研究表明唾液基化在几种神经系统疾病中存在缺陷,但这种重要的糖基化在神经系统中的功能仍然知之甚少。糖基化的复杂性,增加的多效性和冗余性,以及现有遗传方法的局限性,极大地阻碍了对极其复杂的脊椎动物神经系统唾液化的研究。因此,一个适当的模式系统将是在这一领域更有效和加速研究的重要工具。在这里,我们建议使用果蝇作为模式生物来研究n -链唾液化的神经功能。我们之前描述了果蝇唾液转移酶,DSiaT,果蝇中唯一的唾液转移酶。该酶与DSiaT具有高度同源性,与DSiaT具有相同的功能特性,包括相似的受体特异性和在大脑中的表达升高。我们最近的实验表明,果蝇唾液化的功能仅限于神经系统。我们发现唾液化调节神经传递和神经肌肉连接的发育。唾液化异常导致果蝇显著的神经表型,包括温度敏感性麻痹、运动缺陷和寿命显著缩短。我们的实验表明,一个简单的n -连接糖蛋白唾液化在调节神经活动中起着突出的作用,这建立了糖基化参与神经系统调节的新范式。这种新颖的、神经系统特异性的n链唾液化聚糖的功能在果蝇和人类之间可能是保守的。目前的项目将扩展我们之前的研究,并将研究(i)果蝇唾液化神经功能的细胞机制,(ii)唾液化介导的神经兴奋性控制的分子机制,以及(iii)唾液化在神经可塑性中的作用。我们将采用多学科策略,结合果蝇模型系统的优势,包括其对遗传操作的特殊适应性,详尽的神经发育特征,唾液化基因的低冗余和多效性,以及完善的电生理和行为方法,细胞培养和生化技术,以及聚糖分析的新技术。该项目将揭示神经调节和发育的关键进化保守原理,这可能对生物医学研究和相关治疗策略有用。我们的研究还将建立果蝇作为未来研究糖基化在神经系统中的作用的多功能模型系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADISLAV M PANIN其他文献
VLADISLAV M PANIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADISLAV M PANIN', 18)}}的其他基金
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
10207792 - 财政年份:2017
- 资助金额:
$ 30.26万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
9384393 - 财政年份:2017
- 资助金额:
$ 30.26万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8702249 - 财政年份:2011
- 资助金额:
$ 30.26万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8309155 - 财政年份:2011
- 资助金额:
$ 30.26万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8162799 - 财政年份:2011
- 资助金额:
$ 30.26万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8894325 - 财政年份:2011
- 资助金额:
$ 30.26万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
7942241 - 财政年份:2009
- 资助金额:
$ 30.26万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
6720264 - 财政年份:2004
- 资助金额:
$ 30.26万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 30.26万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 30.26万 - 项目类别:
Studentship