Causal Inference in Repeated Observational Studies

重复观察研究中的因果推断

基本信息

  • 批准号:
    8031063
  • 负责人:
  • 金额:
    $ 7.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A major goal of many empirical studies in the health sciences is to evaluate the effect of treatments or policy changes. Frequently, random allocation of participants to treatments is not feasible due to practical and ethical reasons. Therefore, participants who choose a treatment may differ from those who choose the control condition. Lack of adequate controls for treated participants often leads to biased treatment effect estimation. Our proposed research is motivated by a repeated cross-sectional observational study on smoking cessation. The smoking cessation program has enrolled smokers every year since 2001 and participants voluntarily choose one of the two intervention arms. In January 2005, an indoor smoking ban was enacted in Italy, so the post-ban intervention effect is likely to be intertwined with the ban effect. Separating the effect due to this policy change from the intervention effect is of great interest to the scientific community. Several challenges are present in the analysis: 1) the program is repeated over time, thus participants are not only incomparable between different treatment arms, but also incomparable before and after the smoking ban. The analytical approach must take the time domain into consideration. 2) The unmeasured confounding is even a bigger issue in repeated observational studies, since it may influence participants' selection differently at different time points. 3) Some important outcomes, such as consumed cigarettes per day (CPD), have highly right-skewed distribution with a non-trivial portion of zeros. Thus standard regression approaches are not applicable and a distribution-free inference is desirable. Propensity score methodology is a popular approach to estimating a causal effect in observational studies. For cross-sectional data, matching or stratification based on propensity score can be used to balance the covariates distribution (Rosenbaum and Rubin, 1983). In longitudinal data, regression analysis incorporating propensity score weights is used to remove time-varying confounding provided all relevant confounders have been observed (Robins, et al. 2000). However, for repeated cross-sectional observational studies, little work has been published to address causal relationship. This project is an attempt to fill this gap by identifying assumptions for causal inference in repeated cross-sectional observational studies and establishing a new propensity score matching methodology to facilitate the estimation. The proposed propensity score matching estimators will be unbiased, distribution-free, and adapt to unknown time effects. Specifically, we plan to achieve two goals in this project: 1) Establishing a generalized potential outcome framework and extending the standard propensity score matching method to develop a difference-in-difference type of estimator for estimating the smoking cessation intervention effect, the policy change effect and their potential interaction. 2) Assessing the potential impact of unmeasured time-dependent covariates on the treatment effect estimate over time. PUBLIC HEALTH RELEVANCE: The proposed research will develop a new statistical methodology to evaluate intervention effects in repeated cross-sectional observational studies. Many public health programs are observational, in which random allocation of participants to different intervention arms is not feasible or ethical. The project will address a key methodology gap by providing a robust estimation strategy for the situation when the public health intervention program is repeated over time. We will apply the method to evaluate a smoking cessation program and elucidate the potential interaction between the treatment effect and a smoking ban effect.
描述(由申请人提供):健康科学中许多实证研究的主要目标是评估治疗或政策变化的效果。由于实际和道德原因,随机分配参与者接受治疗通常是不可行的。因此,选择治疗的参与者可能与选择对照条件的参与者不同。对治疗参与者缺乏足够的控制通常会导致治疗效果估计出现偏差。我们提出的研究是由一项关于戒烟的重复横断面观察研究推动的。自 2001 年以来,戒烟计划每年都会招募吸烟者,参与者自愿选择两个干预组之一。 2005年1月,意大利颁布了室内禁烟令,因此禁令后的干预效应很可能与禁令效应交织在一起。将这一政策变化的影响与干预效果分开引起了科学界的极大兴趣。分析中存在几个挑战:1)该计划随着时间的推移而重复,因此参与者不仅在不同治疗组之间没有可比性,而且在禁烟前后也没有可比性。分析方法必须考虑时域。 2)在重复观察研究中,无法测量的混杂因素甚至是一个更大的问题,因为它可能会在不同时间点对参与者的选择产生不同的影响。 3) 一些重要的结果,例如每天消耗的香烟量 (CPD),具有高度右偏分布,其中有很大一部分为零。因此,标准回归方法不适用,需要无分布推理。倾向评分方法是观察性研究中估计因果效应的一种流行方法。对于横截面数据,基于倾向得分的匹配或分层可用于平衡协变量分布(Rosenbaum 和 Rubin,1983)。在纵向数据中,如果所有相关的混杂因素都已被观察到,则采用结合倾向得分权重的回归分析来消除随时间变化的混杂因素(Robins 等人,2000 年)。然而,对于重复的横断面观察研究,很少有研究发表来解决因果关系。该项目试图通过在重复的横断面观察研究中确定因果推理的假设并建立新的倾向评分匹配方法来促进估计来填补这一空白。所提出的倾向得分匹配估计器将是无偏的、无分布的并且适应未知的时间效应。具体来说,我们计划在该项目中实现两个目标:1)建立广义的潜在结果框架,并扩展标准倾向评分匹配方法,开发双重差分类型的估计量,用于估计戒烟干预效果、政策变化效果及其潜在相互作用。 2) 评估随着时间的推移,未测量的时间相关协变量对治疗效果估计的潜在影响。 公共卫生相关性:拟议的研究将开发一种新的统计方法来评估重复横断面观察研究的干预效果。许多公共卫生项目都是观察性的,将参与者随机分配到不同的干预组是不可行或不道德的。该项目将通过为公共卫生干预计划随着时间的推移重复进行时的情况提供稳健的估计策略,解决关键的方法差距。我们将应用该方法来评估戒烟计划,并阐明治疗效果和禁烟效果之间的潜在相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Lu其他文献

Bo Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Lu', 18)}}的其他基金

Matched Design with Sensitivity Analysis for Observational Survival Data in Cardiovascular Patient Management using EMR Data
使用 EMR 数据对心血管患者管理中的观察性生存数据进行匹配设计和敏感性分析
  • 批准号:
    10731172
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
Causal Inference for Treatment Effect using Observational Healthcare Data with Unequal Sampling Weights
使用不等采样权重的观察性医疗数据对治疗效果进行因果推断
  • 批准号:
    9310324
  • 财政年份:
    2015
  • 资助金额:
    $ 7.45万
  • 项目类别:
Causal Inference in Repeated Observational Studies
重复观察研究中的因果推断
  • 批准号:
    8267023
  • 财政年份:
    2011
  • 资助金额:
    $ 7.45万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了