Causal Inference for Treatment Effect using Observational Healthcare Data with Unequal Sampling Weights

使用不等采样权重的观察性医疗数据对治疗效果进行因果推断

基本信息

  • 批准号:
    9310324
  • 负责人:
  • 金额:
    $ 23.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-30 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): A common goal in health outcome and policy research, as well as in other disciplines, is to evaluate the possible causal effect of an intervention, which is broadly defined as a policy change, program participation, or a medical treatment. In health outcome research, many datasets are observational since randomization is often not feasible or ethical. Also, many of these datasets are obtained from large probability surveys. This presents major challenges in inferring causal relationships due to the following facts: (1) the differences in outcomes for intervention groups could be due to the differences in covariates prior to the intervention; and (2) they always involve unequal weighting due to complex sampling designs. Propensity score-based adjustments are widely used to reduce the confounding bias of covariates in observational studies. But there is a critical methodological gap with regard to appropriately incorporating complex survey design in propensity score analysis, and there is a significant amount of confusion among researchers regarding the best practice for interpreting causal effect when using survey data. The overarching goal of this project is to develop a systematic and statistically valid approach for employing causal inference techniques with complex healthcare survey data. Because of the use of sampling weights, the proposed methods are particularly useful in the presence of heterogeneous treatment effects, i.e. different groups may respond differently to a policy change or the introduction of a certain medical treatment. The proposed study will achieve four specific aims: (1) Develop a potential-outcome-based theoretical framework to streamline causal inference in complex surveys; (2) Develop both propensity score and survey design adjusted estimators, including weighted, stratified and matched estimators; (3) Conduct extensive simulation studies to evaluate the performance of various estimators under different practical scenarios and develop a statistical software package for practitioners; and (4) Apply the proposed methodology to a real survey for comparative trauma care research. This study is expected to fill a critical gap in healthcare policy and treatment effect evaluation research by extending the commonly used propensity score adjustment for non-survey data to complex sampling designs. Findings of this study will help promote AHRQ's mission to produce more accurate evidence for health care program evaluation and to improve the current practice of comparative health outcome research. A significant contribution is this general purpose methodology which will be widely applicable and can benefit government agencies, policy makers, and social, political and health science researchers, in those situations where survey data are vital sources for comparative outcomes research and program policy evaluation.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Lu其他文献

Bo Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Lu', 18)}}的其他基金

Matched Design with Sensitivity Analysis for Observational Survival Data in Cardiovascular Patient Management using EMR Data
使用 EMR 数据对心血管患者管理中的观察性生存数据进行匹配设计和敏感性分析
  • 批准号:
    10731172
  • 财政年份:
    2023
  • 资助金额:
    $ 23.91万
  • 项目类别:
Causal Inference in Repeated Observational Studies
重复观察研究中的因果推断
  • 批准号:
    8267023
  • 财政年份:
    2011
  • 资助金额:
    $ 23.91万
  • 项目类别:
Causal Inference in Repeated Observational Studies
重复观察研究中的因果推断
  • 批准号:
    8031063
  • 财政年份:
    2011
  • 资助金额:
    $ 23.91万
  • 项目类别:

相似海外基金

Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Standard Grant
Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
  • 批准号:
    2310288
  • 财政年份:
    2023
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Standard Grant
Towards remission and full recovery from obsessive-compulsive disorder: Investigating the efficacy of Inference-Based Cognitive-Behavioral Therapy when standard treatment has failed
强迫症的缓解和完全康复:研究标准治疗失败时基于推理的认知行为疗法的疗效
  • 批准号:
    477668
  • 财政年份:
    2023
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Operating Grants
Nonparametric Inference for Convex Functions and Continuous Treatment Effects
凸函数和连续治疗效果的非参数推理
  • 批准号:
    2210312
  • 财政年份:
    2022
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Continuing Grant
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
  • 批准号:
    10449576
  • 财政年份:
    2022
  • 资助金额:
    $ 23.91万
  • 项目类别:
Optimizing care for older adults in the new treatment era for type 2 diabetes and heart failure: Strengthening causal inference through novel approaches and evidence triangulation
在 2 型糖尿病和心力衰竭的新治疗时代优化老年人护理:通过新方法和证据三角测量加强因果推理
  • 批准号:
    10673040
  • 财政年份:
    2022
  • 资助金额:
    $ 23.91万
  • 项目类别:
Improved Inference for Treatment Effects in the Presence of Interference
改进存在干扰时治疗效果的推断
  • 批准号:
    558919-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Deep Generative Models for Treatment Effect Inference in Healthcare
用于医疗保健治疗效果推断的深度生成模型
  • 批准号:
    2721961
  • 财政年份:
    2022
  • 资助金额:
    $ 23.91万
  • 项目类别:
    Studentship
Novel causal inference methods to inform clinical decision on when to discontinue symptomatic treatment for patients with dementia
新的因果推断方法可为痴呆患者何时停止对症治疗提供临床决策
  • 批准号:
    10322425
  • 财政年份:
    2021
  • 资助金额:
    $ 23.91万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10297407
  • 财政年份:
    2021
  • 资助金额:
    $ 23.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了