Role of Nucleases in RNA Primer Removal and Mutagenesis
核酸酶在 RNA 引物去除和诱变中的作用
基本信息
- 批准号:7809910
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBase PairingCancer EtiologyCell NucleusClassificationCleaved cellComplexDNADNA PrimaseDNA RepairDNA SequenceDNA biosynthesisDNA-Directed RNA PolymeraseDataDefectDiseaseEnzymesEukaryotic CellExcisionExodeoxyribonuclease IExonucleaseFoundationsFundingGenerationsGenesGenome StabilityGenomic InstabilityGenomicsGoalsHereditary DiseaseHumanHuman Cell LineImageIn VitroIncidenceKnock-outLeadLigationLinkMalignant NeoplasmsMammalian CellMediatingMismatch RepairMitochondriaMitochondrial DNAMitochondrial MyopathiesModelingMolecularMutagenesisMutationOkazaki fragmentsOther GeneticsParentsPathologicPathway interactionsPatientsPhenotypePlayPoint MutationPositioning AttributeProcessRNA ProcessingRNA primersReactionReadingRecombinant DNARepetitive SequenceReplication-Associated ProcessResearchResolutionRoleSaccharomyces cerevisiaeScientistSeriesStressStructureSystemTestingTransgenic MiceTreatment ProtocolsTrinucleotide RepeatsWorkYeastsbasecancer initiationcarcinogenesisdesigneconomic impactgraduate studentin vivomouse modelmutantnovelnucleasepreventpublic health relevancerepairedresearch studyribonuclease H1
项目摘要
DESCRIPTION (provided by applicant): Appropriate implementation of Okazaki fragment maturation during DNA replication in eukaryotic cells is a fundamental mechanism for mutation avoidance and genome stability. During lagging strand DNA synthesis, multiple RNA primers and immediately adjoined DNA-fragments are synthesized by primase (a hetero tetramer of a RNA polymerase and DNA Pol ). However, both enzymes lack a proof reading function. Therefore, this initial RNA-DNA fragment (alpha-segment of the Okazaki fragment) is highly mutagenic and must be processed by nuclease complexes. The parent proposal aims to define detailed molecular mechanism for the nuclease-driven RNA primer processing in eukaryotic nucleus and mitochondrion. For the last funding period, we have defined the roles of several nucleases in these processes, including S. cerevisiae RNase H (35), ScRad27 or human FEN1, and exonuclease-1, and mutagenic consequences when these nucleases are defective. The parent proposal continues our focus to test a central hypothesis that a-segment processing is a vital part of cellular mechanisms to maintain genomic integrity and prevent mutagenic stresses due to intrinsic DNA sequence obstacles and exogenous insults. Deficiency of this integrative machinery could lead to a high incidence of mutagenesis and carcinogenesis. We will further define detailed molecular mechanisms for the nuclease-driven "a-segment" processing in Okazaki fragment maturation during replication of normal DNA sequence and repetitive DNA sequence regions, in the nucleus as well as the mitochondrion. Through a series of vigorous systematic analyses, we intend to obtain a high resolution image of how these nuclease complexes collectively work towards RNA primer processing in different scenarios and to relate in vitro and in vivo data using yeast and mammalian systems, including human cell lines and transgenic mice. Recently, we found that two major nucleases, FEN1 and DNA2, are localized into mitochondria and cooperatively process replication and repair DNA intermediates for ligation and completion of circular mtDNA replication and repair. These novel and exciting observations prompted us to expand our scope: i) to knock out the DNA2 gene to determine if defective DNA2-mediated RNA primer removal causes mitochondrial genomic instabilities and consequently promotes cancers and other genetic diseases and ii) to link functional defects of the DNA2 mutations identified in human mitochondrion-based diseases to pathologic mechanisms. Information made available from these additional studies will establish a relationship among the functions of these novel mitochondrial genes, unique mitochondrial mutagenic phenotype(s), and pathological mechanisms of cancers and other genetic diseases. The proposed study may also set a good foundation for new treatment regimens to patients with mitochondrion-based cancers and other disorders. Moreover, the proposed research will have immediate economic impact by creating 1 postdoctoral position and retaining a graduate student and covering efforts of two key existing scientists.
PUBLIC HEALTH RELEVANCE: The proposed studies will establish a relationship among the functions of these novel mitochondrial genes, unique mitochondrial mutagenic phenotype(s), and pathological mechanisms of cancers and other genetic diseases and may provide new treatment regimens to patients with mitochondrion-based cancers and other disorders. Moreover, the proposed research will have immediate economic impact by creating 1 postdoctoral position and retaining a graduate student and covering efforts of two key existing scientists.
描述(由申请人提供):在真核细胞DNA复制过程中适当实施Okazaki片段成熟是避免突变和基因组稳定的基本机制。在滞后链DNA合成过程中,多个RNA引物和立即连接的DNA片段由引物酶(RNA聚合酶和DNA Pol的异四聚体)合成。然而,这两种酶都缺乏校对功能。因此,这个初始RNA-DNA片段(冈崎片段的α片段)是高度诱变的,必须由核酸酶复合物处理。本提案旨在定义真核生物细胞核和线粒体中核酸酶驱动的RNA引物加工的详细分子机制。在上一个资助期,我们已经确定了几种核酸酶在这些过程中的作用,包括葡萄球菌RNase H(35)、ScRad27或人类FEN1和核酸外切酶-1,以及这些核酸酶缺陷时的致突变后果。母体提案继续我们的重点是验证一个中心假设,即a段加工是维持基因组完整性和防止由于内在DNA序列障碍和外源损伤引起的诱变胁迫的细胞机制的重要组成部分。缺乏这种整合机制可能导致高发生率的突变和致癌。我们将进一步定义细胞核和线粒体中正常DNA序列和重复DNA序列区域复制过程中冈崎片段成熟过程中核酸酶驱动的“a段”加工的详细分子机制。通过一系列有力的系统分析,我们打算获得这些核酸酶复合物如何在不同情况下共同作用于RNA引物加工的高分辨率图像,并将酵母和哺乳动物系统(包括人类细胞系和转基因小鼠)的体外和体内数据联系起来。最近,我们发现两种主要的核酸酶FEN1和DNA2定位于线粒体中,并协同处理复制和修复DNA中间体,以连接和完成环状mtDNA的复制和修复。这些新颖而令人兴奋的观察结果促使我们扩大了研究范围:1)敲除DNA2基因,以确定DNA2介导的RNA引物去除缺陷是否会导致线粒体基因组不稳定,从而促进癌症和其他遗传疾病;2)将人类线粒体疾病中发现的DNA2突变的功能缺陷与病理机制联系起来。从这些额外的研究中获得的信息将建立这些新的线粒体基因的功能、独特的线粒体致突变表型以及癌症和其他遗传疾病的病理机制之间的关系。提出的研究也可能为线粒体癌症和其他疾病患者的新治疗方案奠定良好的基础。此外,拟议的研究将创造1个博士后职位,保留一名研究生,并涵盖两名现有关键科学家的工作,从而产生直接的经济影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BINGHUI SHEN其他文献
BINGHUI SHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BINGHUI SHEN', 18)}}的其他基金
Okazaki fragment maturation: mutagenesis and cell survival
冈崎片段成熟:诱变和细胞存活
- 批准号:
10636417 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10307594 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10064136 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
DNA repair gene mutations and prostate cancer
DNA修复基因突变与前列腺癌
- 批准号:
10529297 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
8103282 - 财政年份:2010
- 资助金额:
$ 50.55万 - 项目类别:
Lung and other cancer etiological model of BER gene polymorphisms
BER基因多态性的肺癌和其他癌症病因模型
- 批准号:
7990964 - 财政年份:2010
- 资助金额:
$ 50.55万 - 项目类别:
MECHANISTIC ANALYSIS OF SITE DIRECTED MUTANT NUCLEASE ENZYMES
定点突变核酸酶的机理分析
- 批准号:
6470648 - 财政年份:2001
- 资助金额:
$ 50.55万 - 项目类别:
相似海外基金
Mapping long-range G-G base pairing interaction within the human genome
绘制人类基因组内长程 G-G 碱基配对相互作用图谱
- 批准号:
2887243 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Studentship
Structure and function of DNA polymerase lambda opposite DNA lesions which disrupt Watson-Crick base pairing
DNA 聚合酶 lambda 的结构和功能与破坏 Watson-Crick 碱基配对的 DNA 损伤相反
- 批准号:
10065004 - 财政年份:2017
- 资助金额:
$ 50.55万 - 项目类别:
Molecular basis of acceleration of base-pairing between sRNA and target mRNA by Hfq
Hfq加速sRNA与靶mRNA碱基配对的分子基础
- 批准号:
16K07259 - 财政年份:2016
- 资助金额:
$ 50.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating mRNA-rRNA base pairing in translation initiation
研究翻译起始中的 mRNA-rRNA 碱基配对
- 批准号:
9171027 - 财政年份:2016
- 资助金额:
$ 50.55万 - 项目类别:
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2015
- 资助金额:
$ 50.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2014
- 资助金额:
$ 50.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Expanding the natural DNA base-pairing alphabet: Small molecule mediated assembly of DNA nanomaterials with novel geometries
扩展天然 DNA 碱基配对字母表:小分子介导的具有新颖几何形状的 DNA 纳米材料的组装
- 批准号:
444512-2013 - 财政年份:2013
- 资助金额:
$ 50.55万 - 项目类别:
Postgraduate Scholarships - Doctoral
Effects of Vicinal Surface Chemistry on DNA Base-Pairing using Single-Molecule RE
使用单分子 RE 邻位表面化学对 DNA 碱基配对的影响
- 批准号:
8280932 - 财政年份:2012
- 资助金额:
$ 50.55万 - 项目类别:
Effects of Vicinal Surface Chemistry on DNA Base-Pairing using Single-Molecule RE
使用单分子 RE 邻位表面化学对 DNA 碱基配对的影响
- 批准号:
8442838 - 财政年份:2012
- 资助金额:
$ 50.55万 - 项目类别:
COLLABORATIVE RESEARCH: Uncovering the Kinetic Mechanism of Base-Pairing and Stacking in RNA Folding
合作研究:揭示 RNA 折叠中碱基配对和堆积的动力学机制
- 批准号:
0920588 - 财政年份:2009
- 资助金额:
$ 50.55万 - 项目类别:
Continuing Grant