Cheminformatics
化学信息学
基本信息
- 批准号:8336960
- 负责人:
- 金额:$ 15.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAssimilationsBiologicalBlast CellChemicalsChemistryCollectionComputer SimulationDataData AnalysesDatabasesDevelopmentEnvironmentFamilyInformation ManagementIntuitionKansasMetadataMethodsMiningModelingPatternProtocols documentationQualifyingQuantitative Structure-Activity RelationshipReportingResearchResourcesScreening procedureSecureSeriesServicesSolubilityUniversitiesVariantanalogcheminformaticsdata miningexperienceimprovedinsightmeetingsnovelprogramssmall molecule librariessonartrend
项目摘要
If one imagines activity-directed synthesis to resemble a game of Battleship, then in silico data mining is like
sonar: rather than blasting through all chemical space near preliminary hits until tangible patterns emerge, one
can mine the wealth of preliminary data to detect key underlying trends and target one's chemistry accordingly.
Herein we thus propose to apply a series of computational protocols to efficient delivery of chemical insight that
will guide targeted synthesis of hit analogs with elevated prospects for achieving probe status. Our overarching
objective is a seamless IT pipeline that acquires, analyzes, stores and delivers all information relevant to
scientific function of this Specialized Chemistry Center (SCC), specifically focusing on delivering:
1. a robust, efficient and secure information management environment that enables assimilation of all data
and metadata associated with a given screen into our own local databases in a format suitable for
analysis and internal reference and reporting of resulting analyses, data and metadata in the formats
required by the synthesis core, the originating screening center and the MLPCN program,
2. an array of specialized in silico screening mechanisms that permit (a) facile characterization of
bioactive clusters within the preliminary screening set, (b) identification of subsets of large existing
compound collections that physicochemically overlap with such promising regions of chemistry space,
and (c) intuition of novel chemistries that stand to augment and potentially improve upon existing
bioactives,
3. highly insightful quantitative structure-activity relationship (QSAR) models for potent families of
bioactives that illuminate key structural variants with optimal prospects for meeting viable probe criteria,
and
4. reliable in silico prescreens for compound solubility or other practical issues that should be gauged prior
to compound acquisition or synthesis.
Our access to a wealth of computational and support resources dedicated toward chemical library
development, our extensive experience in the application of the above methods toward probe development as
part of a CMLD program and PSL projects, and our established research focus on development of novel
algorithms that enhance the biological relevance, target-sensitivity and chemical information content of
modeling paradigms render our team particularly well qualified to deliver these services.
如果一个人想象活动导向的合成类似于一个游戏的战舰,那么在硅片数据挖掘就像
声纳:而不是通过所有的化学空间爆炸附近的初步打击,直到有形的模式出现,一个
可以挖掘丰富的初步数据,以检测关键的潜在趋势,并相应地针对一个人的化学。
因此,在本文中,我们提出应用一系列计算协议来有效地传递化学洞察力,
将指导靶向合成具有实现探针状态的提高前景的命中类似物。我们的总体
目标是一个无缝的IT管道,用于获取、分析、存储和交付与以下内容相关的所有信息:
该专业化学中心(SCC)的科学功能,特别侧重于提供:
1.一个强大、高效和安全的信息管理环境,能够同化所有数据
以及与给定屏幕相关联的元数据以适合于
分析和内部参考,并以格式报告所产生的分析、数据和元数据
所需的合成核心,原始筛选中心和MLPCN计划,
2.一系列专门的计算机筛选机制,允许(a)
初步筛选组内的生物活性簇,(B)鉴定大的现有生物活性簇的子集,
在物理化学上与化学空间的这些有希望的区域重叠的化合物集合,
以及(c)对新化学的直觉,这些新化学能够增强并潜在地改进现有的
生物活性物质,
3.高洞察力的定量构效关系(QSAR)模型,为有效的家庭,
阐明关键结构变体的生物活性物质具有满足可行探针标准的最佳前景,
和
4.对于化合物溶解度或其他实际问题的可靠的计算机预筛选,
来复合获取或合成。
我们获得了大量的计算和支持资源,致力于化学图书馆
开发,我们在应用上述方法进行探头开发方面的丰富经验,
CMLD计划和PSL项目的一部分,我们的既定研究重点是开发新的
增强生物相关性、目标敏感性和化学信息内容的算法
建模范例使我们的团队特别有资格提供这些服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERALD H LUSHINGTON其他文献
GERALD H LUSHINGTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERALD H LUSHINGTON', 18)}}的其他基金
相似海外基金
Assimilations- und Kontrasteffekte in der sozialen Urteilsbildung: Das Inklusions-Exklusionsmodell als allgemeines Urteilsmodell zur Vorhersage der Richtung und der Größe von Kontexteffekten
社会判断形成中的同化和对比效应:包含-排除模型作为预测情境效应方向和大小的一般判断模型
- 批准号:
136888925 - 财政年份:2009
- 资助金额:
$ 15.82万 - 项目类别:
Research Grants
assimilations of Chinese informations and formation of views on northern region in Japan at early modern times
近代初期中国信息的吸收与日本北部地区观念的形成
- 批准号:
20320098 - 财政年份:2008
- 资助金额:
$ 15.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ECCS-IHCS: Adaptive Network Assimilations Through System Reconfigurability
ECCS-IHCS:通过系统可重构性进行自适应网络同化
- 批准号:
0725914 - 财政年份:2007
- 资助金额:
$ 15.82万 - 项目类别:
Continuing Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
- 批准号:
8806553 - 财政年份:1988
- 资助金额:
$ 15.82万 - 项目类别:
Continuing Grant














{{item.name}}会员




