Cheminformatics
化学信息学
基本信息
- 批准号:7938923
- 负责人:
- 金额:$ 17.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAssimilationsBiologicalBlast CellChemicalsChemistryCollectionComputer SimulationDataData AnalysesDatabasesDevelopmentEnvironmentFamilyInformation ManagementIntuitionKansasMetadataMethodsMiningModelingPatternProtocols documentationQualifyingQuantitative Structure-Activity RelationshipReportingResearchResourcesScreening procedureSecureSeriesServicesSolubilitySpecialized CenterUniversitiesVariantanalogcheminformaticsdata miningexperienceimprovedinsightmeetingsnovelprogramssmall molecule librariessonartrend
项目摘要
If one imagines activity-directed synthesis to resemble a game of Battleship, then in silico data mining is like
sonar: rather than blasting through all chemical space near preliminary hits until tangible patterns emerge, one
can mine the wealth of preliminary data to detect key underlying trends and target one's chemistry accordingly.
Herein we thus propose to apply a series of computational protocols to efficient delivery of chemical insight that
will guide targeted synthesis of hit analogs with elevated prospects for achieving probe status. Our overarching
objective is a seamless IT pipeline that acquires, analyzes, stores and delivers all information relevant to
scientific function of this Specialized Chemistry Center (SCC), specifically focusing on delivering:
1. a robust, efficient and secure information management environment that enables assimilation of all data
and metadata associated with a given screen into our own local databases in a format suitable for
analysis and internal reference and reporting of resulting analyses, data and metadata in the formats
required by the synthesis core, the originating screening center and the MLPCN program,
2. an array of specialized in silico screening mechanisms that permit (a) facile characterization of
bioactive clusters within the preliminary screening set, (b) identification of subsets of large existing
compound collections that physicochemically overlap with such promising regions of chemistry space,
and (c) intuition of novel chemistries that stand to augment and potentially improve upon existing
bioactives,
3. highly insightful quantitative structure-activity relationship (QSAR) models for potent families of
bioactives that illuminate key structural variants with optimal prospects for meeting viable probe criteria,
and
4. reliable in silico prescreens for compound solubility or other practical issues that should be gauged prior
to compound acquisition or synthesis.
Our access to a wealth of computational and support resources dedicated toward chemical library
development, our extensive experience in the application of the above methods toward probe development as
part of a CMLD program and PSL projects, and our established research focus on development of novel
algorithms that enhance the biological relevance, target-sensitivity and chemical information content of
modeling paradigms render our team particularly well qualified to deliver these services.
如果人们将活动导向的合成想象为一款战舰游戏,那么计算机数据挖掘就像
声纳:与其在初步命中附近爆破所有化学空间,直到出现有形的模式,不如
可以挖掘大量的初步数据来检测关键的潜在趋势并相应地瞄准一个人的化学反应。
因此,在这里,我们建议应用一系列计算协议来有效地传递化学见解,
将指导命中类似物的靶向合成,并提高实现探针状态的前景。我们的首要任务
目标是一个无缝的 IT 管道,用于获取、分析、存储和交付所有相关信息
该专业化学中心 (SCC) 的科学职能,特别侧重于提供:
1. 一个强大、高效和安全的信息管理环境,能够同化所有数据
以及与给定屏幕相关的元数据以适合的格式存储到我们自己的本地数据库中
分析和内部参考以及以格式报告结果分析、数据和元数据
合成核心、原始筛选中心和 MLPCN 程序所需的,
2. 一系列专门的计算机筛选机制,允许 (a) 轻松表征
初步筛选组内的生物活性簇,(b) 识别大型现有的子集
与化学空间中此类有前途的区域在物理化学上重叠的化合物集合,
(c) 对新化学物质的直觉,这些化学物质可以增强并可能改进现有的化学物质
生物活性剂,
3. 具有高度洞察力的有效家族的定量构效关系(QSAR)模型
阐明关键结构变异的生物活性物质,具有满足可行探针标准的最佳前景,
和
4. 对化合物溶解度或其他应事先测量的实际问题进行可靠的计算机预筛选
化合物获取或合成。
我们可以获得专门用于化学库的大量计算和支持资源
开发,我们在将上述方法应用于探针开发方面拥有丰富的经验
CMLD 计划和 PSL 项目的一部分,我们既定的研究重点是开发新颖的
增强生物相关性、目标敏感性和化学信息内容的算法
建模范例使我们的团队特别有资格提供这些服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERALD H LUSHINGTON其他文献
GERALD H LUSHINGTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERALD H LUSHINGTON', 18)}}的其他基金
相似海外基金
Assimilations- und Kontrasteffekte in der sozialen Urteilsbildung: Das Inklusions-Exklusionsmodell als allgemeines Urteilsmodell zur Vorhersage der Richtung und der Größe von Kontexteffekten
社会判断形成中的同化和对比效应:包含-排除模型作为预测情境效应方向和大小的一般判断模型
- 批准号:
136888925 - 财政年份:2009
- 资助金额:
$ 17.86万 - 项目类别:
Research Grants
assimilations of Chinese informations and formation of views on northern region in Japan at early modern times
近代初期中国信息的吸收与日本北部地区观念的形成
- 批准号:
20320098 - 财政年份:2008
- 资助金额:
$ 17.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ECCS-IHCS: Adaptive Network Assimilations Through System Reconfigurability
ECCS-IHCS:通过系统可重构性进行自适应网络同化
- 批准号:
0725914 - 财政年份:2007
- 资助金额:
$ 17.86万 - 项目类别:
Continuing Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
- 批准号:
8806553 - 财政年份:1988
- 资助金额:
$ 17.86万 - 项目类别:
Continuing Grant














{{item.name}}会员




