Imputation and Analysis of Rare Variants in Admixed Populations

混合群体中稀有变异的估算和分析

基本信息

  • 批准号:
    8275661
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-16 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Description: Genomewide association studies (GWAS) have identified >4000 genetic loci for a wide range of human traits, but still leaving a large proportion of heritability unexplained. In the post-GWAS era, geneticists are exploiting massively parallel sequencing technologies to study less common (minor allele frequency [MAF] 0.5- 5%) and rare (MAF<0.5%) variants, hereafter together referred to as rare variants for brevity. In the meantime, multiethnic GWAS, recognized as potentially more powerful for gene discovery and fine mapping, are receiving increasing attention from the genetics community. Among the multiethnic populations, admixed populations such as African Americans and Hispanic Americans are particularly attractive because they comprise more than 20% of the US population. These admixed populations offer a unique opportunity for gene mapping because one can utilize admixture linkage disequilibrium (LD) to search for genes underlying diseases that differ strikingly in prevalences across populations. However, little methodological work exists for admixed populations that can accommodate post-GWAS data. The methodological work lags in at least three major areas. First, there are few, if any, genotype imputation methods that are tailored to admixed samples, can accommodate the ever increasing public resources, and the typical mixture of genotyping and sequencing data among the study samples. Imputation will continue to play an essential role as sequencing will remain cost prohibitive for large GWAS collections of samples. Second, there has been no published work on practical issues regarding rare variant imputation in admixed populations. Third, despite the recent rich literature of statistical methods for rare variant association analysis in relatively homogenous populations, the field needs methods that can efficiently analyze rare variants in admixed samples, particularly with imputed or partially imputed data. In this application, we propose the following aims to fill in the above gaps: 1). Develop efficient hidden Markov model and Singular Value Decomposition based methods for haplotype-to-haplotype imputation in admixed populations; 2). Assess quality of and provide practical guidelines on rare variants imputation in admixed populations; 3). Develop a robust statistical test for the analysis of rare variants in admixed populations; and 4). Develop, distribute and support freely available software packages for the methods developed in this project. PUBLIC HEALTH RELEVANCE: Public Health Relevance Genomewide association studies (GWAS) have identified >4000 genetic loci for a wide range of human traits, but still leaving a large proportion of heritability unexplained. In the post-GWAS era, geneticists are exploiting massively parallel sequencing technologies to study less common (minor allele frequency [MAF] 0.5- 5%) and rare (MAF<0.5%) variants, hereafter together referred to as rare variants for brevity. In the meantime, multiethnic GWAS, recognized as potentially more powerful for gene discovery and fine mapping, are receiving increasing attention from the genetics community. Among the multiethnic populations, admixed populations such as African Americans and Hispanic Americans are particularly attractive because they comprise more than 20% of the US population. These admixed populations offer a unique opportunity for gene mapping because one can utilize admixture linkage disequilibrium (LD) to search for genes underlying diseases that differ strikingly in prevalences across populations. However, little methodological work exists for admixed populations that can accommodate post-GWAS data. In this application, we will fill in methodological and practical gaps in the genetic analysis of rare variants in admixed populations
描述(由申请人提供): 项目描述:全基因组关联研究(GWAS)已经为广泛的人类性状确定了>4000个遗传位点,但仍有很大一部分遗传力无法解释。在后GWAS时代,遗传学家正在利用大规模平行测序技术来研究不太常见(次要等位基因频率[MAF] 0.5- 5%)和罕见(MAF<0.5%)的变体,以下简称为罕见变体。与此同时,多种族GWAS被认为在基因发现和精细定位方面可能更强大,正受到遗传学界越来越多的关注。在多种族人口中,非洲裔美国人和西班牙裔美国人等混合人口特别有吸引力,因为他们占美国人口的20%以上。这些混合人群提供了一个独特的机会,基因定位,因为人们可以利用混合连锁不平衡(LD),以寻找潜在的疾病,在人群中的患病率显着不同的基因。然而,几乎没有方法学工作存在的混合人口,可以容纳后GWAS数据。方法工作至少在三个主要领域滞后。首先,有几个,如果有的话,基因型插补方法,是专门为混合样本,可以适应不断增加的公共资源,以及研究样本中的基因分型和测序数据的典型混合物。插补将继续发挥重要作用,因为测序对于大型GWAS样本收集仍然成本高昂。第二,还没有发表的工作在混合人群中的罕见变异插补的实际问题。第三,尽管最近有丰富的文献在相对同质的人群中进行罕见变异关联分析的统计方法,但该领域需要能够有效分析混合样本中罕见变异的方法,特别是使用插补或部分插补数据的方法。在本申请中,我们提出以下目的来填补上述空白:1)。发展基于隐马尔可夫模型和奇异值分解的混合群体单倍型间插补方法; 2).评估混合人群中罕见变异插补的质量并提供实用指南; 3)。开发一种稳健的统计检验,用于分析混合群体中的罕见变异;以及4)。开发、分发和支持本项目中开发的方法的免费软件包。 公共卫生关系: 全基因组关联研究(GWAS)已经为广泛的人类特征确定了>4000个遗传位点,但仍然留下了很大比例的遗传性。 无法解释在后GWAS时代,遗传学家正在利用大规模平行测序技术来研究不太常见(次要等位基因频率[MAF] 0.5- 5%)和罕见(MAF<0.5%)的变体,以下简称为罕见变体。与此同时,多种族GWAS被认为在基因发现和精细定位方面可能更强大,正受到遗传学界越来越多的关注。在多种族人口中,非洲裔美国人和西班牙裔美国人等混合人口特别有吸引力,因为他们占美国人口的20%以上。这些混合人群提供了一个独特的机会,基因定位,因为人们可以利用混合连锁不平衡(LD),以寻找潜在的疾病,在人群中的患病率显着不同的基因。然而,几乎没有方法学工作存在的混合人口,可以容纳后GWAS数据。在本申请中,我们将填补混合人群中罕见变异遗传分析的方法学和实践空白

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Li其他文献

Yun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Li', 18)}}的其他基金

Data Science Core
数据科学核心
  • 批准号:
    10224312
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10455492
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
Evaluation of the Genetics of Hidradenitis Suppurativa
化脓性汗腺炎的遗传学评价
  • 批准号:
    10194381
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
Evaluation of the Genetics of Hidradenitis Suppurativa
化脓性汗腺炎的遗传学评价
  • 批准号:
    9979198
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10673859
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
Genetic Studies of Blood Cell Traits in Multi-Ethnic Cohorts
多种族群体血细胞特征的遗传学研究
  • 批准号:
    9313930
  • 财政年份:
    2016
  • 资助金额:
    $ 32万
  • 项目类别:
Imputation and Analysis of Rare Variants in Admixed Populations
混合群体中稀有变异的估算和分析
  • 批准号:
    8470204
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
Imputation and Analysis of Rare Variants in Admixed Populations
混合群体中稀有变异的估算和分析
  • 批准号:
    8634810
  • 财政年份:
    2012
  • 资助金额:
    $ 32万
  • 项目类别:
Design and Analysis of Sequencing-based Studies for Complex Human Traits
复杂人类特征的基于测序的研究的设计和分析
  • 批准号:
    8323316
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:
Design and Analysis of Sequencing-based Studies for Complex Human Traits
复杂人类特征的基于测序的研究的设计和分析
  • 批准号:
    8471743
  • 财政年份:
    2011
  • 资助金额:
    $ 32万
  • 项目类别:

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
  • 批准号:
    24K14615
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
  • 批准号:
    23K16740
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
  • 批准号:
    2890475
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
  • 批准号:
    2225178
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了