A Personalized Genomic Medicine Pilot Program Using the NJgene eMERGE Experience
使用 NJgene eMERGE 经验的个性化基因组医学试点计划
基本信息
- 批准号:8510804
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:African AmericanAlgorithmsAsthmaAttitudeCardiacClinicalCollectionConsentConsultConsultationsDataDepositionDevelopmentDiabetes MellitusDiseaseDisease susceptibilityElectronic Health RecordElectronicsElementsFocus GroupsGeneticGenetic VariationGenomeGenomicsGenotypeGoalsHeightHumanHuman Genome ProjectHypothyroidismIndividualInstitutional Review BoardsKnowledgeLaboratoriesLearningLinkLipidsLogicMeasuresMedicineMethodsMiningModelingNon-Insulin-Dependent Diabetes MellitusOutcomeParticipantPatientsPharmaceutical PreparationsPhasePhenotypePhysiciansPhysiologicalPilot ProjectsPopulationPositioning AttributePractice GuidelinesPrimary Care PhysicianPrimary Health CarePrincipal InvestigatorProcessRecommendationReportingResearchSamplingSiteSurveysTestingTherapeuticToxic effectVariantWorkbasebiobankcase controlclinical careclinically relevantcohortcommunity consultationexomeexperiencegenetic associationgenome sequencinggenome wide association studyhealth recordmeetingspoint of careprogramsresponsetext searchingtool
项目摘要
DESCRIPTION (provided by applicant): One promise of the human genome project was to enable genome-informed personalized medicine. During the past four years Northwestern has been a site in the eMERGE network. This consortium of biobanks linked to electronic health records (EHR) has developed portable algorithms to identify cases and controls from EHR data and then performed genome-wide association studies (GWAS) to correlate genetic variation with disease and normal physiological variation in widely measured laboratory values. In response to RFA-HG-10-009, we propose to contribute to the network development of additional phenotype algorithms and the analysis of the genotype data from the Northwestern eMERGE cohort supplemented by approximately 3,000 additional EHR-linked samples, each associated with 660k GWAS genotypes. We will develop a range of phenotypes that will allow us to assess patient and physician attitudes to the utility of genetic information in predicting disease susceptibility, drug response and therapeutic outcomes. Based on these consultations, we propose to develop a modified quality improvement model for determining, in a pilot study, which genotypes might be most valuable to present in a clinical care setting. We will develop a consent model and associated educational methods in support of providing experimental subjects with genotype information in a clinical encounter, including CLIA certified re-genotyping of participants who were previously genotyped for research purposes. At Northwestern, we utilize a widely-deployed, commercial EHR, EPIC, and propose to develop technical approaches for integrating genetic variation data into the health record and to effectively present these results using point-of-care, decision support tools to physicians. A goal of this effort is to develop best practices collaboratively within the network, for reporting of genetic variation data and developing local practice guidelines for using genetic data in primary care clinical encounters. Finally, we propose a rigorous assessment of the impact of these approaches on primary care physicians and their patients, defining the regulatory issues and then disseminating lessons learned and best practice recommendations. Together, the work proposed should provide an assessment of key elements of genome-informed personalized medicine.
RELEVANCE: This project begins to answer questions about using genomic analysis and applying it to real world clinical situations. We propose to study the clinical and personal utility of genomic variation in a diverse primary care patient and physician population.
描述(由申请人提供):人类基因组计划的一个承诺是实现基因组信息个性化医疗。在过去的四年里,西北大学一直是eMERGE网络的一个站点。这个与电子健康记录(EHR)相关的生物库联盟开发了便携式算法,以从EHR数据中识别病例和对照,然后进行全基因组关联研究(GWAS),以将遗传变异与广泛测量的实验室值中的疾病和正常生理变异相关联。作为对RFA-HG-10-009的回应,我们建议为额外表型算法的网络开发做出贡献,并分析来自西北eMERGE队列的基因型数据,并补充约3,000个额外的EHR连锁样本,每个样本与660 k GWAS基因型相关。我们将开发一系列表型,使我们能够评估患者和医生对遗传信息在预测疾病易感性,药物反应和治疗结果中的效用的态度。基于这些磋商,我们建议开发一种改进的质量改进模型,用于在试点研究中确定哪些基因型可能是最有价值的,目前在临床护理环境。我们将开发一种同意模型和相关的教育方法,以支持在临床接触中为实验受试者提供基因型信息,包括对先前出于研究目的进行基因分型的受试者进行CLIA认证的重新基因分型。在西北大学,我们利用广泛部署的商业EHR,EPIC,并建议开发将遗传变异数据整合到健康记录中的技术方法,并使用即时护理,决策支持工具向医生有效地呈现这些结果。这项工作的目标是在网络内协作制定最佳做法,以报告遗传变异数据,并制定在初级保健临床接触中使用遗传数据的地方实践指南。最后,我们建议严格评估这些方法对初级保健医生及其患者的影响,定义监管问题,然后传播经验教训和最佳实践建议。总之,拟议的工作应该提供对基因组信息个性化医疗关键要素的评估。
相关性:该项目开始回答有关使用基因组分析并将其应用于真实的世界临床情况的问题。我们建议在不同的初级保健患者和医生人群中研究基因组变异的临床和个人效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
REX L CHISHOLM其他文献
REX L CHISHOLM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('REX L CHISHOLM', 18)}}的其他基金
Northwestern Genomic Risk Assessment and Management Program
西北基因组风险评估和管理计划
- 批准号:
10454926 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Northwestern Genomic Risk Assessment and Management Program
西北基因组风险评估和管理计划
- 批准号:
10207722 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Northwestern Genomic Risk Assessment and Management Program
西北基因组风险评估和管理计划
- 批准号:
10640230 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Northwestern Genomic Risk Assessment and Management Program
西北基因组风险评估和管理计划
- 批准号:
10166110 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Genomic Medicine at Northwestern: Discovery and Implementation
西北大学的基因组医学:发现和实施
- 批准号:
9358505 - 财政年份:2015
- 资助金额:
$ 24.1万 - 项目类别:
Genomic Medicine at Northwestern: Discovery and Implementation
西北大学的基因组医学:发现和实施
- 批准号:
9481431 - 财政年份:2015
- 资助金额:
$ 24.1万 - 项目类别:
A Personalized Genomic Medicine Pilot Program Using the NJgene eMERGE Experience
使用 NJgene eMERGE 经验的个性化基因组医学试点计划
- 批准号:
8319350 - 财政年份:2011
- 资助金额:
$ 24.1万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant