Empirical-Bayesian Testing for Family Genome-wide Association Data

家族全基因组关联数据的经验贝叶斯测试

基本信息

  • 批准号:
    8252112
  • 负责人:
  • 金额:
    $ 16.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-06 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): With availability of new genotyping technology, in particular SNP arrays as well as the coming next generation sequencing, efforts of mapping genes of human diseases/traits have been focusing on genetic association study. Family-based and population-based studies are two commonly-used designs of genetic association study. In contrast to population-based study, family based study is robust to bias due to population stratification. However, family-based study is often less powerful than population-based study because association information between families is not used due to its susceptibility to the bias of population stratification. The aim of this application is to develop a new analytic tool to fully utilize data as well as maintain the robustness to population stratification. Specifically, we propose a new statistic approach under the Empirical Bayesian framework, in which the bias of population stratification of individual loci is estimated so that the amount of information between families contributed to the testing statistic shrinks based on the bias. To demonstrate the validity and superior performance of the proposed approach compared to approaches available, we plan to evaluate it by extensive simulations and apply it to the family genome-wide association data in dbGaP. PUBLIC HEALTH RELEVANCE: With availability of new genotyping technologies, efforts of mapping genes of human diseases/traits have been focusing on genome-wide association study (GWAS). Family-based and population-based studies are two commonly-used designs used in GWAS, and each of them has unique advantages and disadvantages. The aim of this application is to develop a new analytic tool to make use of advantages of both designs - to maintain the robustness against population stratification and to achieve higher power. The proposed study has the potential to facilitate the research for identifying novel loci related to complex diseases.
描述(由申请人提供):随着新的基因分型技术的可用性,特别是SNP阵列以及即将到来的下一代测序,人类疾病/性状基因定位的努力一直集中在遗传关联研究上。基于家系和基于群体的研究是遗传关联研究的两种常用设计。与基于人群的研究相比,基于家庭的研究对由于人群分层引起的偏倚具有稳健性。然而,基于家庭的研究往往不如基于人口的研究,因为家庭之间的关联信息是不使用的,由于其对人口分层的偏见的敏感性。该应用程序的目的是开发一种新的分析工具,以充分利用数据,并保持人口分层的鲁棒性。具体地说,我们提出了一种新的统计方法下的经验贝叶斯框架,在其中估计的个别基因座的人口分层的偏差,使家庭之间的信息量有助于测试统计量收缩的基础上的偏差。为了证明所提出的方法的有效性和上级性能相比,现有的方法,我们计划通过广泛的模拟评估它,并将其应用到家庭全基因组关联数据dbGaP。 公共卫生相关性:随着新的基因分型技术的出现,全基因组关联研究(genome-wide association study,GWAS)已成为人类疾病/性状基因定位的研究热点。基于家庭和基于人群的研究是GWAS中常用的两种研究设计,每种研究设计都有其独特的优点和缺点。本申请的目的是开发一种新的分析工具,以利用两种设计的优势-保持对人群分层的稳健性,并实现更高的功效。该研究为复杂疾病相关基因位点的研究提供了新的思路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Wang其他文献

Enhancing Corrosion Rate of Mg-Y-Zn-Cu and Mg-Y-Cu Alloys by Regulating Long-Period Stacking Ordered Phase Morphology and Composition
  • DOI:
    10.1007/s11665-025-10789-3
  • 发表时间:
    2025-02-17
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Tao Wang;Guoqiang Xi;Yanlong Ma;Ju Xiong;Xin Long;Junda Jin;Linjiang Chai;Jingfeng Wang
  • 通讯作者:
    Jingfeng Wang
Temporal Fuzzy Reasoning Spiking Neural P Systems with Real Numbers for Power System Fault Diagnosis
电力系统故障诊断中实数时域模糊推理尖峰神经P系统

Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Wang', 18)}}的其他基金

Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors
应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应
  • 批准号:
    10180781
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors
应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应
  • 批准号:
    10656157
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors
应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应
  • 批准号:
    10393020
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
Development of integrative models for early liver toxicity assessment
早期肝毒性评估综合模型的开发
  • 批准号:
    9017336
  • 财政年份:
    2016
  • 资助金额:
    $ 16.66万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    9172470
  • 财政年份:
    2013
  • 资助金额:
    $ 16.66万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    8492317
  • 财政年份:
    2013
  • 资助金额:
    $ 16.66万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    8706228
  • 财政年份:
    2013
  • 资助金额:
    $ 16.66万
  • 项目类别:
Empirical-Bayesian Testing for Family Genome-wide Association Data
家族全基因组关联数据的经验贝叶斯测试
  • 批准号:
    8095216
  • 财政年份:
    2011
  • 资助金额:
    $ 16.66万
  • 项目类别:

相似海外基金

Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10818088
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
  • 批准号:
    10571022
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
  • 批准号:
    10590405
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
  • 批准号:
    2305910
  • 财政年份:
    2023
  • 资助金额:
    $ 16.66万
  • 项目类别:
    Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
  • 批准号:
    10608931
  • 财政年份:
    2022
  • 资助金额:
    $ 16.66万
  • 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
  • 批准号:
    10656719
  • 财政年份:
    2022
  • 资助金额:
    $ 16.66万
  • 项目类别:
The role of admixture in human evolution
混合物在人类进化中的作用
  • 批准号:
    10683318
  • 财政年份:
    2022
  • 资助金额:
    $ 16.66万
  • 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
  • 批准号:
    2116322
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
    Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
  • 批准号:
    10307040
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
  • 批准号:
    10307680
  • 财政年份:
    2021
  • 资助金额:
    $ 16.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了