Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors

应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应

基本信息

  • 批准号:
    10393020
  • 负责人:
  • 金额:
    $ 35.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary Background: In-depth study of neoantigens will promote our knowledge of the fundamental mechanisms of basic immunology and immune-related disease processes, such as response to cancer immunotherapy. Neoantigens play a key role in the recognition of tumor cells by T cells and are increasingly shown to be targets of checkpoint inhibitor-induced immune response. However, several missing links exist in neoantigen research. (1) Only a small proportion of neoantigens can elicit T cell responses. It is even less clear which neoantigens will be recognized by which specific T cell receptor (TCR). (2) Although neoantigens are important during the course of action of immunotherapies, how neoantigen repertoire data can be used to predict patient response is only poorly understood. (3) The lack of standardized analysis pipelines and limited sharing of neoantigen data have hindered efficient and consistent research in the tumor immunogenomics field. Aim 1: Build a transfer learning-based model to predict immunogenicity of neoantigens. So far, only a very limited number of reports have created predictive models determining whether a neoantigen/MHC complex can elicit any T cell response. Even fewer of them are capable of predicting the TCR-binding specificity of neoantigens. However, the capability to predict the overall immunogenicity and the TCR-binding specificity of neoantigens is critical for improving the benefit of immunotherapy. Aim 1 addresses this challenge with advanced transfer learning algorithms, followed by benchmarking and laboratory validations. Aim 2: Predict response to checkpoint inhibitors by integration of the immunogenicity and other properties of all neoantigens in a patient, through a Bayesian multi-instance learning model. To date, most studies have focused on the neoantigen/mutation load approach in correlation with response of patients to immunotherapy administration. This simplistic approach misses the rich information contained in the whole repertoire of neoantigens per patient and has been successful in only a few studies, but not others. Aim 2 addresses this important inadequacy by creating a Bayesian multi-instance learning model that fully considers various quality features, including immunogenicity, of all neoantigens in a patient for prediction of treatment response. Aim 3: Create a web portal to provide neoantigen-related computational services and to share neoantigen data. The PI will establish a public webserver providing cloud-based standardized services, including prediction of neoantigens and the advanced analysis methods developed in Aim 1 and 2. The webserver will openly share neoantigen/TCR and patient phenotype data, in accordance with IRB and HIPAA regulations. Expected impact: (1) This project will predict the immunogenicity of neoantigens, which could inform neoantigen vaccine development. (2) This project will predict response to checkpoint inhibitors and other forms of immunotherapy based on patient neoantigen profiles. (3) The neoantigen database will propel research and also lead to clinical applications for cancers and other immune-related diseases, such as COVID-19.
项目摘要 背景:对新抗原的深入研究将促进我们对新抗原基本机制的了解。 基础免疫学和免疫相关疾病过程,如对癌症免疫治疗的反应。 新抗原在T细胞识别肿瘤细胞中起着关键作用,并且越来越多地被证明是 检查点抑制剂诱导免疫反应的靶点。然而,在新抗原中存在几个缺失的环节。 研究。(1)只有一小部分新抗原能诱导T细胞反应。更不清楚的是, 新的抗原将被识别通过哪个特定的T细胞受体(TCR)。(2)尽管新抗原很重要 在免疫治疗的作用过程中,新抗原谱系数据如何用于预测患者 人们对此的反应还知之甚少。(3)缺乏标准化的分析管道,共享有限 新的抗原数据阻碍了肿瘤免疫基因组学领域的有效和一致的研究。 目的1:建立基于转移学习的新抗原免疫原性预测模型。到目前为止,只有一个非常 数量有限的报告建立了预测模型,确定新抗原/MHC复合体是否可以 引发任何T细胞反应。其中能够预测TCR结合特异性的就更少了 新抗原。然而,预测总的免疫原性和TCR结合特异性的能力 新抗原对于提高免疫治疗的效益至关重要。AIM 1通过以下方式应对这一挑战 先进的迁移学习算法,随后是基准测试和实验室验证。 目的2:结合免疫原性和其他特性预测对检查点抑制剂的反应 患者体内的所有新抗原,通过贝叶斯多实例学习模型。到目前为止,大多数研究已经 重点研究新抗原/突变负载方法与患者免疫治疗反应的相关性 行政管理。这种简单化的方法遗漏了包含在整个 仅在少数几项研究中取得成功,而在其他研究中则没有成功。AIM 2解决了这一问题 通过创建充分考虑各种质量的贝叶斯多实例学习模型来实现重要不足 患者体内所有新抗原的特征,包括免疫原性,用于预测治疗反应。 目标3:创建一个门户网站,以提供新抗原相关的计算服务并共享新抗原 数据。PI将建立一个公共网络服务器,提供基于云的标准化服务,包括预测 新抗原和在目标1和2中开发的先进分析方法。网络服务器将开放 根据IRB和HIPAA的规定,共享新抗原/TCR和患者表型数据。 预期影响:(1)该项目将预测新抗原的免疫原性,这可能会为 新抗原疫苗的开发。(2)该项目将预测对检查点抑制剂和其他形式的反应 根据患者的新抗原特征进行免疫治疗。(3)新抗原数据库将推动研究和 还导致癌症和其他免疫相关疾病的临床应用,如新冠肺炎。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Wang其他文献

Enhancing Corrosion Rate of Mg-Y-Zn-Cu and Mg-Y-Cu Alloys by Regulating Long-Period Stacking Ordered Phase Morphology and Composition
  • DOI:
    10.1007/s11665-025-10789-3
  • 发表时间:
    2025-02-17
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Tao Wang;Guoqiang Xi;Yanlong Ma;Ju Xiong;Xin Long;Junda Jin;Linjiang Chai;Jingfeng Wang
  • 通讯作者:
    Jingfeng Wang
Temporal Fuzzy Reasoning Spiking Neural P Systems with Real Numbers for Power System Fault Diagnosis
电力系统故障诊断中实数时域模糊推理尖峰神经P系统

Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Wang', 18)}}的其他基金

Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors
应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应
  • 批准号:
    10180781
  • 财政年份:
    2021
  • 资助金额:
    $ 35.97万
  • 项目类别:
Applying deep learning to predict T cell receptor binding specificity of neoantigens and response to checkpoint inhibitors
应用深度学习预测新抗原的 T 细胞受体结合特异性以及对检查点抑制剂的反应
  • 批准号:
    10656157
  • 财政年份:
    2021
  • 资助金额:
    $ 35.97万
  • 项目类别:
Development of integrative models for early liver toxicity assessment
早期肝毒性评估综合模型的开发
  • 批准号:
    9017336
  • 财政年份:
    2016
  • 资助金额:
    $ 35.97万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    9172470
  • 财政年份:
    2013
  • 资助金额:
    $ 35.97万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    8706228
  • 财政年份:
    2013
  • 资助金额:
    $ 35.97万
  • 项目类别:
Statistical Method for Identifying Genetic Modifiers of Conotruncal Heart De
鉴定圆锥干心脏 De 遗传修饰的统计方法
  • 批准号:
    8492317
  • 财政年份:
    2013
  • 资助金额:
    $ 35.97万
  • 项目类别:
Empirical-Bayesian Testing for Family Genome-wide Association Data
家族全基因组关联数据的经验贝叶斯测试
  • 批准号:
    8252112
  • 财政年份:
    2011
  • 资助金额:
    $ 35.97万
  • 项目类别:
Empirical-Bayesian Testing for Family Genome-wide Association Data
家族全基因组关联数据的经验贝叶斯测试
  • 批准号:
    8095216
  • 财政年份:
    2011
  • 资助金额:
    $ 35.97万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.97万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了