Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
基本信息
- 批准号:8248753
- 负责人:
- 金额:$ 22.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAllelesAttentionBiomedical ResearchChargeChromosome MappingChromosomesCommunitiesComplexComputing MethodologiesDataData SetDemographyDevelopmentDiabetes MellitusDiagnosisDiseaseDisease AssociationFrequenciesGenesGeneticGenetic VariationGenomicsGenotypeGoalsHaplotypesHumanHuman GeneticsHuman GenomeHypertensionImmigrationIndividualInheritedInternationalKnowledgeLeadLeft Ventricular HypertrophyLinkLinkage DisequilibriumMapsMethodsMissionModelingMolecularObesityOperating SystemPopulationPopulation GeneticsPopulation HeterogeneityRecording of previous eventsResearchResourcesRheumatoid ArthritisSamplingSingle Nucleotide PolymorphismSoftware ToolsStatistical MethodsStrokeStructureTechnologyTestingbasegene discoverygenetic variantgenome-widehuman datahuman diseaseinsightinterestmigrationnovelpreventprogramsuser friendly software
项目摘要
Linkage disequilibrium (LD, the non-random association of alleles at two or more loci) provides valuable
information for detecting genetic variations that are responsible for complex human diseases such as
hypertension, diabetes, obesity, and stroke. Haplotypes, the combinations of alleles on the same chromosome
that were inherited as a unit, may offer valuable insights on the LD structure of the human genome and may
provide additional power for mapping disease genes. Such insights may be useful not only in disease gene
mapping, but also in other fields such as population genetics, where haplotype information has been used to
study migration and immigration rates, genetic demography, and human evolutionary history. The international
HapMap project, which aims to develop a haplotype map of the human genome, has already begun to provide
valuable resources that can in turn motivate the development and testing of new haplotype methods. Although
haplotype analysis using a large quantity of single nucleotide polymorphisms (SNPs) is in great need, it also
poses great challenges. The overall goal of this project is to develop novel statistical and computational
methods and software tools for the analysis of hapltoypes in mapping of complex human disease genes. The
specific objectives of this project are: (1) to develop efficient algorithms to estimate haplotype frequencies and
determine individual haplotype configurations in the presence of informatively missing genotypes and
genotyping errors in samples of unrelated individuals; (2) to develop statistical methods to identify a set of
candidate genomic regions for use in disease association mapping; (3) to develop new haplotype-based
disease gene mapping methods that can handle informatively missing genotypes and genotyping errors, that
can combine information from multiple regions of interest, and that are robust to population heterogeneity; and
(4) to release robust and user-friendly software, which implements the proposed methods, to the scientific
community at no charge. The proposed methods will be performed on the publicly available data (e.g. data
from the HapMap project), as well as other human data generated in our collaborators' ongoing projects,
including data sets concerning genetic effects on left ventricular hypertrophy, rheumatoid arthritis, and obesity.
The proposed project is closely related to NIH's mission in that the accomplished methods will be useful to the
broad biomedical research community and will greatly facilitate the study of human genetic variation and its
association with complex diseases. This will help in pursuit of new knowledge about these diseases. The proposed methods are expected to aid the discovery of the genes that are responsible for complex human
diseases, help us to better understand them, and finally enhance our ability to prevent, diagnose, and treat
these diseases.
连锁不平衡(LD,两个或更多基因座上等位基因的非随机关联)提供了有价值的
用于检测导致复杂人类疾病的基因变异的信息,例如
高血压、糖尿病、肥胖症和中风。单倍型,同一染色体上的等位基因组合
可能为人类基因组的LD结构提供有价值的见解,并可能
为绘制疾病基因图谱提供额外的动力。这样的见解可能不仅对疾病基因有用
测绘,但也在其他领域,如群体遗传学,单倍型信息已被用于
研究移民和移民率、基因人口学和人类进化史。国际足联
旨在开发人类基因组单倍型图谱的HapMap项目已经开始提供
宝贵的资源,可以反过来推动新的单倍型方法的开发和测试。虽然
使用大量单核苷酸多态(SNPs)进行单倍型分析是非常需要的,它还
带来了巨大的挑战。这个项目的总体目标是开发新的统计和计算
用于分析复杂人类疾病基因图谱中单倍型的方法和软件工具。这个
这个项目的具体目标是:(1)开发有效的算法来估计单倍型频率和
在存在信息性缺失的基因型时确定个体单倍型配置
(2)开发统计方法,以确定一套
用于疾病关联图谱的候选基因组区域;(3)开发基于单倍型的新的
疾病基因图谱方法,可以处理信息缺失的基因类型和基因分型错误,
可以结合来自多个感兴趣区域的信息,并对种群异质性具有强大的抵抗力;以及
(4)向科学界发布健壮和用户友好的软件,以实现所提出的方法
免费提供社区服务。拟议的方法将对公开可用的数据(例如数据)执行
来自HapMap项目),以及我们的合作者正在进行的项目中生成的其他人类数据,
包括关于左心室肥厚、类风湿性关节炎和肥胖的遗传效应的数据集。
拟议的项目与NIH的使命密切相关,因为所完成的方法将对
广泛的生物医学研究界,将极大地促进人类遗传变异及其
与复杂疾病有关。这将有助于寻求关于这些疾病的新知识。所提出的方法有望帮助发现导致复杂人类的基因。
疾病,帮助我们更好地了解它们,最终提高我们预防、诊断和治疗的能力
这些疾病。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genome-wide association studies of rheumatoid arthritis data via multiple hypothesis testing methods for correlated tests.
通过相关测试的多种假设检验方法对类风湿性关节炎数据进行全基因组关联研究。
- DOI:10.1186/1753-6561-3-s7-s38
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Kang,Guolian;Childers,DouglasK;Liu,Nianjun;Zhang,Kui;Gao,Guimin
- 通讯作者:Gao,Guimin
Application of imputation methods to the analysis of rheumatoid arthritis data in genome-wide association studies.
- DOI:10.1186/1753-6561-3-s7-s24
- 发表时间:2009-12-15
- 期刊:
- 影响因子:0
- 作者:Childers DK;Kang G;Liu N;Gao G;Zhang K
- 通讯作者:Zhang K
Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.
多变量降维方法来识别多种复杂性状背后的基因-基因和基因-环境相互作用
- DOI:10.1371/journal.pone.0108103
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Xu HM;Sun XW;Qi T;Lin WY;Liu N;Lou XY
- 通讯作者:Lou XY
Reducing bias of allele frequency estimates by modeling SNP genotype data with informative missingness.
- DOI:10.3389/fgene.2012.00107
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Lin WY;Liu N
- 通讯作者:Liu N
On the design and analysis of next-generation sequencing genotyping for a cohort with haplotype-informative reads.
- DOI:10.1016/j.ymeth.2015.01.016
- 发表时间:2015-06
- 期刊:
- 影响因子:4.8
- 作者:Zhi, Degui;Liu, Nianjun;Zhang, Kui
- 通讯作者:Zhang, Kui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nianjun Liu其他文献
Nianjun Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nianjun Liu', 18)}}的其他基金
Genome-wide Structured Association Testing & Regional Admixture Mapping
全基因组结构化关联测试
- 批准号:
7925643 - 财政年份:2007
- 资助金额:
$ 22.74万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant