Genome Wide Haplotype Association Analysis

全基因组单倍型关联分析

基本信息

  • 批准号:
    7589791
  • 负责人:
  • 金额:
    $ 23.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Linkage disequilibrium (LD, the non-random association of alleles at two or more loci) provides valuable information for detecting genetic variations that are responsible for complex human diseases such as hypertension, diabetes, obesity, and stroke. Haplotypes, the combinations of alleles on the same chromosome that were inherited as a unit, may offer valuable insights on the LD structure of the human genome and may provide additional power for mapping disease genes. Such insights may be useful not only in disease gene mapping, but also in other fields such as population genetics, where haplotype information has been used to study migration and immigration rates, genetic demography, and human evolutionary history. The international HapMap project, which aims to develop a haplotype map of the human genome, has already begun to provide valuable resources that can in turn motivate the development and testing of new haplotype methods. Although haplotype analysis using a large quantity of single nucleotide polymorphisms (SNPs) is in great need, it also poses great challenges. The overall goal of this project is to develop novel statistical and computational methods and software tools for the analysis of haplotypes in mapping of complex human disease genes. The specific objectives of this project are: (1) to develop efficient algorithms to estimate haplotype frequencies and determine individual haplotype configurations in the presence of informatively missing genotypes and genotyping errors in samples of unrelated individuals; (2) to develop statistical methods to identify a set of candidate genomic regions for use in disease association mapping; (3) to develop new haplotype-based disease gene mapping methods that can handle informatively missing genotypes and genotyping errors, that can combine information from multiple regions of interest, and that are robust to population heterogeneity; and (4) to release robust and user-friendly software, which implements the proposed methods, to the scientific community at no charge. The proposed methods will be performed on the publicly available data (e.g. data from the HapMap project), as well as other human data generated in our collaborators' ongoing projects, including data sets concerning genetic effects on left ventricular hypertrophy, rheumatoid arthritis, and obesity. The proposed project is closely related to NIH's mission in that the accomplished methods will be useful to the broad biomedical research community and will greatly facilitate the study of human genetic variation and its association with complex diseases. This will help in pursuit of new knowledge about these diseases. Relevance: The proposed methods are expected to aid the discovery of the genes that are responsible for complex human diseases, help us to better understand them, and finally enhance our ability to prevent, diagnose, and treat these diseases.
描述(由申请人提供):连锁不平衡(LD,两个或多个基因座上等位基因的非随机关联)为检测导致复杂人类疾病(如高血压、糖尿病、肥胖和中风)的遗传变异提供了有价值的信息。单倍型是作为一个单位遗传的同一染色体上的等位基因的组合,可以为人类基因组的LD结构提供有价值的见解,并可以为绘制疾病基因提供额外的力量。这种见解不仅在疾病基因定位中有用,而且在其他领域也很有用,如群体遗传学,其中单倍型信息已被用于研究迁移和移民率,遗传人口学和人类进化史。旨在绘制人类基因组单体型图的国际单体型图项目已经开始提供宝贵的资源,这些资源反过来可以促进新的单体型方法的开发和测试。尽管使用大量单核苷酸多态性(SNP)的单倍型分析是非常需要的,但它也提出了巨大的挑战。该项目的总体目标是开发新的统计和计算方法以及软件工具,用于分析复杂人类疾病基因的单倍型。本项目的具体目标是:(1)开发有效的算法来估计单倍型频率,并在无关个体样本中存在信息缺失的基因型和基因分型错误的情况下确定个体单倍型构型;(2)开发统计方法来确定一组用于疾病关联作图的候选基因组区域;(3)开发新的基于单体型的疾病基因定位方法,该方法可以处理信息缺失的基因型和基因分型错误,可以联合收割机结合来自多个感兴趣区域的信息,并且对群体异质性具有鲁棒性;以及(4)免费向科学界发布实施所提议方法的强大且用户友好的软件。所提出的方法将在公开可用的数据(例如来自HapMap项目的数据)以及我们合作者正在进行的项目中生成的其他人类数据上进行,包括关于遗传对左心室肥大,类风湿性关节炎和肥胖的影响的数据集。拟议的项目是密切相关的NIH的使命,在完成的方法将是有用的,以广泛的生物医学研究界,并将大大促进人类遗传变异及其与复杂疾病的关联的研究。这将有助于对这些疾病的新知识的追求。 相关性:预计这些方法将有助于发现导致复杂人类疾病的基因,帮助我们更好地了解它们,并最终提高我们预防、诊断和治疗这些疾病的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nianjun Liu其他文献

Nianjun Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nianjun Liu', 18)}}的其他基金

Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
  • 批准号:
    7921843
  • 财政年份:
    2009
  • 资助金额:
    $ 23.2万
  • 项目类别:
Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
  • 批准号:
    8054944
  • 财政年份:
    2008
  • 资助金额:
    $ 23.2万
  • 项目类别:
Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
  • 批准号:
    7467455
  • 财政年份:
    2008
  • 资助金额:
    $ 23.2万
  • 项目类别:
Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
  • 批准号:
    8248753
  • 财政年份:
    2008
  • 资助金额:
    $ 23.2万
  • 项目类别:
Genome Wide Haplotype Association Analysis
全基因组单倍型关联分析
  • 批准号:
    7790716
  • 财政年份:
    2008
  • 资助金额:
    $ 23.2万
  • 项目类别:
Genome-wide Structured Association Testing & Regional Admixture Mapping
全基因组结构化关联测试
  • 批准号:
    7925643
  • 财政年份:
    2007
  • 资助金额:
    $ 23.2万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.2万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了