Analysis of NKLAM: A Novel Gene Associated With Cellular Cytotoxicity
NKLAM 分析:与细胞毒性相关的新基因
基本信息
- 批准号:8243104
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Erythroblastic LeukemiaAgingAnti-Bacterial AgentsAntisense OligonucleotidesApoptosisApoptoticBindingCarcinogensCaspaseCell DeathCell DegranulationCell-Mediated CytolysisCellsCommunicable DiseasesCytolysisCytoplasmic GranulesDigestionDiseaseEffector CellEventExhibitsFingersGenesGoalsGram-Negative BacteriaGrantGranzymeGrowthHealthcare SystemsHost DefenseImmune responseImmunityIn VitroIncidenceInfectionInfectious AgentInjection of therapeutic agentIntegral Membrane ProteinInterferonsInterleukin-12Interleukin-15Interleukin-2InterleukinsK-562LeadLungLymphomaLyticMalignant NeoplasmsMediatingMelanoma CellMembraneMessenger RNAMilitary PersonnelModelingMusNamesNatural Killer CellsNeoplasm MetastasisNormal Statistical DistributionPhagocytosisPlayPopulationPredispositionPrimary NeoplasmProcessProteinsRNA InterferenceResistanceRoleSignal TransductionSiteTestingToll-like receptorsUbiquitinationUridine KinaseVeteransWild Type Mouseantimicrobialcell killingcytokinecytotoxicdisorder preventionin vitro activityin vivokillingslymph nodesmacrophagemicrobialneoplastic cellnoveloverexpressionpathogenperforinpreventreceptorreceptor-mediated signalingresponsetumortumor growthubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant):
Natural killer (NK) cells play an important role in host defense against tumors and infectious agents.
They induce target cell death, primarily by the release of cytotoxic granules containing perforin and granzymes. In studies to characterize additional proteins associated with cytolysis, a novel protein whose expression was highly increased upon cytokine stimulation of NK cells was identified. This protein was named NK lytic associated molecule (NKLAM) and is the subject of this ongoing VA merit grant project. NKLAM is a RING finger transmembrane protein localized to NK cytolytic granule membranes. Studies have shown a role for NKLAM in NK-mediated killing of tumor cells. NKLAM is also up-regulated in macrophages upon toll-like receptor (TLR) stimulation, suggesting a role in bacterial killing as well. To further assess the role of NKLAM, NKLAM deficient (KO) mice were generated. These mice exhibit 50% less NK activity than wild type (WT) mice and produce less interferon-? in response to tumor cell contact. NKLAM KO mice also have substantially higher numbers of lung metastases compared with WT after injection with B16 melanoma cells and show greater dissemination of lymphoma cells to lymph nodes from the primary tumor site. Finally, a critical finding is that NKLAM functions as an E3 ubiquitin ligase. Ubiquitination is a key mechanism for regulating immune responses. In vitro studies of NKLAM KO and WT NK cells and macrophages suggest that NKLAM participates in cytokine and TLR-mediated signaling events. In this model, NKLAM regulates NK/macrophage activity by modulating signaling events in effector cells. Alternatively, preliminary studies have shown that NKLAM is released into the supernatants of NK cells upon degranulation of effector cells. Accordingly, another way NKLAM may function is to be transported into the target cell after release by the effector cell. In this model, NKLAM, acting as an E3 ligase, would ubiquitinate anti-apoptotic or growth associated molecules in the target, resulting in their degradation, thereby promoting target cell apoptosis. We identified a protein, uridine-cytidine kinase-like 1 (UCKL-1), which is ubiquitinated by NKLAM. The function of this novel protein is unknown. However, its homology to uridine kinases and over-expression in tumor cells suggests a role for UCKL-1 in tumor growth and/or survival. To test this, RNA interference (RNAi) was used to down-regulate UCKL-1 expression in NK-sensitive K562 erythroleukemia cells and other NK targets. Decreased expression of UCKL-1 in K562 slows their proliferation, induces apoptosis and enhances their susceptibility to NK-mediated lysis;
over-expression of UCKL-1 reduces their susceptibility to NK lysis. Preliminary studies show that NKLAM may act at the level of the effector cell and/or target cell. These two models are not mutually exclusive and may both be functional depending upon the circumstances. This application consists of three independent but interlinked aims to study the E3 ligase function of NKLAM and its functional consequences in NK cells, macrophages and target cells.
1) Determine the role of NKLAM in NK cells and target cells. The role of NKLAM in signaling and cytotoxic function in NK cells will be assessed. Studies will also be performed to test the hypothesis that upon NK cell degranulation, NKLAM enters target cells and ubiquitinates proteins such as UCKL-1, enhancing target cell death. Studies are proposed to further elucidate the function of the novel protein UCKL-1 in vitro and in vivo.
2) Determine the role of NKLAM in macrophages. The role of NKLAM in TLR-mediated signaling events and in macrophage phagocytosis will be investigated.
3) Characterize NKLAM KO mice to study the role of NKLAM in vivo. A variety of tumor models will be evaluated to determine where NKLAM plays a role. Analysis of NKLAM KO mice may reveal additional roles for NKLAM and potentially unveil alternative mechanisms of cell killing.
PUBLIC HEALTH RELEVANCE:
The long term goal of these studies is to investigate how the anti-tumor and anti-microbial activities of NK cells and macrophages are regulated and how they can be enhanced. NKLAM is an important component of these immunological processes. Understanding the normal mechanisms of anti-tumor and anti-bacterial immunity is a critical first step in developing new therapies, and ultimately, preventing cancer and infectious disease. These diseases are of great relevance to the VA health care system. Our military personnel throughout the world are being exposed to new, resistant microbial pathogens that have emerged and are spreading. They may also be in contact with toxic, cancer causing agents. As our veteran population is aging, deficiencies in immunological functions are associated with increased tumor incidence and increased susceptibility to infection. The proposed studies have the potential to lead to new strategies for disease prevention or treatment.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACKI KORNBLUTH其他文献
JACKI KORNBLUTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACKI KORNBLUTH', 18)}}的其他基金
Molecular Characterization of Anti-Tumor Activity Mediated by Extracellular Vesicles Derived from Natural Killer Cells
自然杀伤细胞来源的细胞外囊泡介导的抗肿瘤活性的分子表征
- 批准号:
10587355 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of Natural Killer (NK) Cell Line-Derived Extracellular Vesicles as a New Treatment for Cancer
开发自然杀伤 (NK) 细胞系衍生的细胞外囊泡作为癌症的新治疗方法
- 批准号:
10383462 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Analysis of NKLAM: A Novel Gene Associated With Cellular Cytotoxicity
NKLAM 分析:与细胞毒性相关的新基因
- 批准号:
8413781 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Analysis of NKLAM: A Novel Gene Associated With Cellular Cytotoxicity
NKLAM 分析:与细胞毒性相关的新基因
- 批准号:
8696768 - 财政年份:2012
- 资助金额:
-- - 项目类别:
NKLAM: An RBR E3 Ubiquitin Ligase Essential for Regulation of Innate Immunity
NKLAM:一种 RBR E3 泛素连接酶,对于调节先天免疫至关重要
- 批准号:
9898218 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Analysis of NKLAM: A Novel Gene Associated With Cellular Cytotoxicity
NKLAM 分析:与细胞毒性相关的新基因
- 批准号:
8795661 - 财政年份:2012
- 资助金额:
-- - 项目类别:
PLATELET-ACTIVATING FACTOR AND METASTASIS: CALCIUM-INDEPENDENT PHOSPHOLIPASE
血小板激活因子和转移:钙非依赖性磷脂酶
- 批准号:
8361461 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Role of Natural Killer Lytic-Associated Molecule (NKLAM) in Natural Killer Functi
自然杀伤裂解相关分子 (NKLAM) 在自然杀伤功能中的作用
- 批准号:
8123617 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)