Role of PTEN in Chromosome Segregation and its Importance for Tumor Suppression
PTEN 在染色体分离中的作用及其对肿瘤抑制的重要性
基本信息
- 批准号:8340701
- 负责人:
- 金额:$ 32.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AKT inhibitionAffectAllelesAllyAnaphaseAneuploidyAutomobile DrivingBindingBiochemicalBiologicalBiological ModelsBiological ProcessCancer BiologyCancer PatientCell DeathCell ProliferationCellsChromosome SegregationChromosomesClinicalDLG1 geneDataDevelopmentEctopic ExpressionEmbryoEnsureFibroblastsFoundationsFrequenciesGenesGoalsHumanHuman CharacteristicsKnowledgeLesionLipidsMalignant NeoplasmsMitosisMitoticMitotic CheckpointMolecularMouse StrainsMusMutant Strains MiceMutateMutationOutcomePTEN genePhenotypePhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPhysiologicalPreventivePropertyProstatic Intraepithelial NeoplasiasProtein Binding DomainProtein phosphataseProteinsProto-Oncogene Proteins c-aktRNA InterferenceRoleSignal TransductionSplenocyteTestingTherapeuticTumor SuppressionTumor Suppressor GenesTumor Suppressor Proteinsbasecancer cellcell transformationdesignimprovedinnovationinsightloss of functionmouse modelneoplasticnovelnovel therapeutic interventionnovel therapeuticsoverexpressionpreventrestorationtreatment strategytripolyphosphatetumortumorigenesis
项目摘要
DESCRIPTION (provided by applicant): The PTEN tumor suppressor gene is mutated, deleted or expressed at reduced levels in a large proportion of human cancers. PTEN is a lipid and protein phosphatase that negatively regulates phosphoinositol-3-kinase (PI3K)/AKT signaling by dephosphorylating phosphatidylinositol-3, 4, 5-triphosphate (PIP3). Unrestrained PI3K/AKT signaling leads to increased cell proliferation and reduced cell death, thereby driving tumorigenesis. Although antagonizing PI3K/AKT signaling is considered the primary physiological role of PTEN and its most relevant property as a tumor suppressor, PTEN may have additional tumor suppressive functions, for instance as a guardian of structural chromosome integrity. However, there is an incomplete understanding of the full repertoire of the normal and tumor suppressive PTEN functions and the extent to which PTEN mutations found in human cancer affect each of these functions. This represents a critical barrier that is slowing down progress toward improving treatment strategies for a large segment of cancer patients. We provide preliminary data that point to a novel biological function of PTEN in ensuring accurate chromosome segregation in mitosis and maintaining chromosome number stability. The central objective of this application is to decipher how mechanistically PTEN regulates proper chromosome segregation, and to determine the extent to which loss of this function contributes to malignant cell transformation, with the ultimate goal to exploit this knowledge for preventive and therapeutic purposes. Our central hypothesis is that PTEN, through its PDZ-interaction domain, regulates proper chromosome segregation in mitosis and that this novel function represents a critical tumor protective function of PTEN. We will test this
hypothesis by pursuing two specific aims. In the first aim, we will determine the mechanism by which PTEN regulates proper chromosome segregation by using mouse embryonic fibroblasts (MEFs) from Pten+/- and other mutant mouse strains in combination with a comprehensive set of cell biological and biochemical approaches. In the second aim, we will establish the role of the Pten PDZ- interaction domain in normal development and tumor suppression using a newly generated "knockin" mouse strain that lacks this domain. We will determine the mitotic, developmental and cancer phenotypes of mice that are heterozygous and homozygous for this "knockin" allele and compare these to those of Pten+/- mice. The expected overall impact of this innovative proposal is that it will fundamentally advance our mechanistic understanding of the normal and neoplastic functions of the second most frequently mutated tumor suppressor gene in human cancer. This knowledge will lay the foundation for development of new therapeutic strategies that will improve the clinical outcome of cancer patients with alterations in PTEN, in addition to conceptually advancing the fields of mitosis and cancer biology.
PUBLIC HEALTH RELEVANCE: PTEN is the second most commonly mutated tumor suppressor in human cancer but the full repertoire of its normal and tumor suppressive functions is unclear, which is slowing down progress toward improving treatment strategies for a large segment of cancer patients. We have discovered a novel function of PTEN in accurate chromosome segregation. We propose to investigate how PTEN performs this function and how important it is for suppression of tumor formation. The studies are highly significant because the insights gained will lay the foundation for development of new therapeutic interventions that will improve the clinical outcome of cancer patients with mutations in PTEN.
DESCRIPTION (provided by applicant): The PTEN tumor suppressor gene is mutated, deleted or expressed at reduced levels in a large proportion of human cancers. PTEN is a lipid and protein phosphatase that negatively regulates phosphoinositol-3-kinase (PI3K)/AKT signaling by dephosphorylating phosphatidylinositol-3, 4, 5-triphosphate (PIP3). Unrestrained PI3K/AKT signaling leads to increased cell proliferation and reduced cell death, thereby driving tumorigenesis. Although antagonizing PI3K/AKT signaling is considered the primary physiological role of PTEN and its most relevant property as a tumor suppressor, PTEN may have additional tumor suppressive functions, for instance as a guardian of structural chromosome integrity. However, there is an incomplete understanding of the full repertoire of the normal and tumor suppressive PTEN functions and the extent to which PTEN mutations found in human cancer affect each of these functions. This represents a critical barrier that is slowing down progress toward improving treatment strategies for a large segment of cancer patients. We provide preliminary data that point to a novel biological function of PTEN in ensuring accurate chromosome segregation in mitosis and maintaining chromosome number stability. The central objective of this application is to decipher how mechanistically PTEN regulates proper chromosome segregation, and to determine the extent to which loss of this function contributes to malignant cell transformation, with the ultimate goal to exploit this knowledge for preventive and therapeutic purposes. Our central hypothesis is that PTEN, through its PDZ-interaction domain, regulates proper chromosome segregation in mitosis and that this novel function represents a critical tumor protective function of PTEN. We will test this
hypothesis by pursuing two specific aims. In the first aim, we will determine the mechanism by which PTEN regulates proper chromosome segregation by using mouse embryonic fibroblasts (MEFs) from Pten+/- and other mutant mouse strains in combination with a comprehensive set of cell biological and biochemical approaches. In the second aim, we will establish the role of the Pten PDZ- interaction domain in normal development and tumor suppression using a newly generated "knockin" mouse strain that lacks this domain. We will determine the mitotic, developmental and cancer phenotypes of mice that are heterozygous and homozygous for this "knockin" allele and compare these to those of Pten+/- mice. The expected overall impact of this innovative proposal is that it will fundamentally advance our mechanistic understanding of the normal and neoplastic functions of the second most frequently mutated tumor suppressor gene in human cancer. This knowledge will lay the foundation for development of new therapeutic strategies that will improve the clinical outcome of cancer patients with alterations in PTEN, in addition to conceptually advancing the fields of mitosis and cancer biology.
PUBLIC HEALTH RELEVANCE: PTEN is the second most commonly mutated tumor suppressor in human cancer but the full repertoire of its normal and tumor suppressive functions is unclear, which is slowing down progress toward improving treatment strategies for a large segment of cancer patients. We have discovered a novel function of PTEN in accurate chromosome segregation. We propose to investigate how PTEN performs this function and how important it is for suppression of tumor formation. The studies are highly significant because the insights gained will lay the foundation for development of new therapeutic interventions that will improve the clinical outcome of cancer patients with mutations in PTEN.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan M. van Deursen其他文献
Cellular senescence in renal ageing and disease
肾脏衰老和疾病中的细胞衰老
- DOI:
10.1038/nrneph.2016.183 - 发表时间:
2016-12-28 - 期刊:
- 影响因子:39.800
- 作者:
Ines Sturmlechner;Matej Durik;Cynthia J. Sieben;Darren J. Baker;Jan M. van Deursen - 通讯作者:
Jan M. van Deursen
Chronic social stress induces p16-mediated senescent cell accumulation in mice
慢性社会压力诱导小鼠中 p16 介导的衰老细胞积累
- DOI:
10.1038/s43587-024-00743-8 - 发表时间:
2024-11-11 - 期刊:
- 影响因子:19.400
- 作者:
Carey E. Lyons;Jean Pierre Pallais;Seth McGonigle;Rachel P. Mansk;Charles W. Collinge;Matthew J. Yousefzadeh;Darren J. Baker;Patricia R. Schrank;Jesse W. Williams;Laura J. Niedernhofer;Jan M. van Deursen;Maria Razzoli;Alessandro Bartolomucci - 通讯作者:
Alessandro Bartolomucci
Jan M. van Deursen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan M. van Deursen', 18)}}的其他基金
The role of senescent cells in late-life tumorigenesis
衰老细胞在晚年肿瘤发生中的作用
- 批准号:
8984872 - 财政年份:2013
- 资助金额:
$ 32.99万 - 项目类别:
The role of senescent cells in late-life tumorigenesis
衰老细胞在晚年肿瘤发生中的作用
- 批准号:
8601177 - 财政年份:2013
- 资助金额:
$ 32.99万 - 项目类别:
The role of senescent cells in late-life tumorigenesis
衰老细胞在晚年肿瘤发生中的作用
- 批准号:
8780613 - 财政年份:2013
- 资助金额:
$ 32.99万 - 项目类别:
The role of senescent cells in late-life tumorigenesis
衰老细胞在晚年肿瘤发生中的作用
- 批准号:
8435619 - 财政年份:2013
- 资助金额:
$ 32.99万 - 项目类别:
Role of PTEN in Chromosome Segregation and its Importance for Tumor Suppression
PTEN 在染色体分离中的作用及其对肿瘤抑制的重要性
- 批准号:
8862427 - 财政年份:2012
- 资助金额:
$ 32.99万 - 项目类别:
Role of PTEN in Chromosome Segregation and its Importance for Tumor Suppression
PTEN 在染色体分离中的作用及其对肿瘤抑制的重要性
- 批准号:
9079435 - 财政年份:2012
- 资助金额:
$ 32.99万 - 项目类别:
Role of PTEN in Chromosome Segregation and its Importance for Tumor Suppression
PTEN 在染色体分离中的作用及其对肿瘤抑制的重要性
- 批准号:
8515369 - 财政年份:2012
- 资助金额:
$ 32.99万 - 项目类别:
BUB1 in Chromosomal Instability and Tumorigenesis
BUB1 在染色体不稳定性和肿瘤发生中的作用
- 批准号:
8295681 - 财政年份:2007
- 资助金额:
$ 32.99万 - 项目类别:
Bub 1 in Chromosomal Instability and Tumorigenesis
Bub 1 在染色体不稳定性和肿瘤发生中的作用
- 批准号:
8025993 - 财政年份:2007
- 资助金额:
$ 32.99万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 32.99万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 32.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists