A temporal view of the Plasmodium-red blood cell interactome
疟原虫-红细胞相互作用组的时间视图
基本信息
- 批准号:8282783
- 负责人:
- 金额:$ 28.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiological AssayBiologyBone MarrowCell NucleusCell membraneCell physiologyCellsComplexComputer SimulationCytoplasmCytoskeletal ProteinsCytoskeletonDataDevelopmentDiseaseErythrocytesEscherichia coliGene ExpressionGene ProteinsGenesGlutathione S-TransferaseGoalsHumanInfectionLesionLibrariesLife Cycle StagesLuciferasesMalariaMethodologyModelingMorphologyOrganellesParasitesPhenotypePlasmodiumPlasmodium falciparumPropertyProtein DynamicsProtein Export PathwayProteinsProteomeRNA InterferenceReportingResearchScreening procedureSeriesSet proteinSignal TransductionSourceStagingStructureSystemTestingTimeYeastsexperiencehigh throughput analysisimprovedinnovationlink proteinnetwork modelsphysical propertyprotein protein interactionpublic health relevanceresearch studyresponsetechnology developmenttoolvectoryeast two hybrid system
项目摘要
DESCRIPTION (provided by applicant): Cellular proteins form complex networks of interactions with other proteins. Although it is clear that these networks are dynamic structures that change in response to environmental signals and that are altered in disease states, our ability to assess the temporal changes in the networks is still at an early stage. Malaria-infected RBCs are a simple model in which to study changes in protein interaction networks over time. RBCs are highly differentiated cells that lack organelles and that contain a limited set of proteins. During infection, malaria parasites export proteins into the RBC that dramatically alter the properties of the host cell. Because RBCs lack nuclei, and thus cannot respond to parasite infection by altering their protein content, the changes that occur in the RBC phenotype must be due to the approximately 300 malaria proteins that are exported into the RBC. The exported malaria proteins are thought to bind to RBC proteins and, in this way, act as lesions that cause perturbations in the cellular protein interaction network. Since detailed information about the timing of expression of most malaria genes is already available, we can model changes in the cellular protein interaction network over time and correlate those temporal changes in the malaria-RBC interactome with changes in cellular properties. However, functional information about these malaria proteins is scarce and only a very limited number of interactions between exported malaria proteins and RBC proteins have been reported. The overall goal of this research is to elucidate, validate, and temporally model the network of protein-protein interactions between the malaria parasite Plasmodium falciparum and RBC proteins. A combination of new yeast strains, improved yeast two-hybrid screening methodology, and two complementary yeast two-hybrid screening approaches will be used to create a high-quality malaria-RBC protein interaction network. Interactions will be validated by GST pull downs and the split-luciferase assay, which we develop in this project for high-throughput analysis of protein-protein interactions in yeast. From this data we will develop a confidence score for each interaction. The malaria-RBC protein interactions will then be integrated with existing gene expression data to develop a time-dependent view of the malaria-RBC interactome. Using the results of our model as a guide, we will investigate the function of temporally distinct malaria-RBC protein interactions using the resealed RBC ghosts and ektacytometry. This project is innovative in its application and development of technologies to study the malaria-RBC protein interaction network. The data generated from this project is relevant not only to our understanding of interactome dynamics but also for understanding how malaria parasites cause disease.
PUBLIC HEALTH RELEVANCE: Proteins are linked to each other by a complex network of interactions. To better understand how these networks change over time and in disease states, we will develop a temporal model of protein- protein interactions in malaria-infected red blood cells. This data is generally relevant to our understanding of cellular processes and specifically relevant to how malaria parasites cause disease.
描述(申请人提供):细胞蛋白质与其他蛋白质形成复杂的相互作用网络。尽管很明显,这些网络是动态的结构,会随着环境信号的变化而变化,并在疾病状态下发生变化,但我们评估网络中的时间变化的能力仍处于早期阶段。感染疟疾的红细胞是研究蛋白质相互作用网络随时间变化的一个简单模型。红细胞是一种高度分化的细胞,缺乏细胞器,含有有限的蛋白质。在感染期间,疟疾寄生虫将蛋白质输出到红细胞中,从而显著改变宿主细胞的特性。由于红细胞缺乏细胞核,因此不能通过改变其蛋白质含量来应对寄生虫感染,因此红细胞表型的变化一定是由于大约300种输出到红细胞中的疟疾蛋白所致。出口的疟疾蛋白被认为与红细胞蛋白结合,并以这种方式作为损害,导致细胞蛋白相互作用网络的扰动。由于有关大多数疟疾基因表达时间的详细信息已经可用,我们可以模拟细胞蛋白质相互作用网络随时间的变化,并将疟疾-红细胞相互作用组中的这些时间变化与细胞特性的变化联系起来。然而,关于这些疟疾蛋白的功能信息很少,而且只报道了出口的疟疾蛋白与红细胞蛋白之间的相互作用的数量非常有限。这项研究的总体目标是阐明、验证和在时间上模拟疟疾寄生虫恶性疟原虫和红细胞蛋白之间的蛋白质-蛋白质相互作用网络。新的酵母菌株、改进的酵母双杂交筛选方法和两种互补酵母双杂交筛选方法的组合将用于创建高质量的疟疾-红细胞蛋白相互作用网络。相互作用将通过GST下拉和分裂荧光素酶试验来验证,这是我们在这个项目中开发的,用于高通量分析酵母中的蛋白质-蛋白质相互作用。根据这些数据,我们将为每个互动开发一个置信度分数。然后,疟疾-红细胞蛋白的相互作用将与现有的基因表达数据相结合,以开发疟疾-红细胞相互作用组的时间依赖视图。以我们模型的结果为指导,我们将使用重新密封的RBC幽灵和红细胞计数法来研究疟疾-RBC蛋白在时间上不同相互作用的功能。该项目在研究疟疾-红细胞蛋白相互作用网络的应用和技术开发方面具有创新性。该项目产生的数据不仅与我们对相互作用组动力学的理解有关,而且也与理解疟疾寄生虫如何致病有关。
与公共健康相关:蛋白质通过复杂的相互作用网络相互联系。为了更好地了解这些网络如何随着时间和疾病状态的变化而变化,我们将开发一个感染疟疾的红细胞中蛋白质-蛋白质相互作用的时间模型。这些数据通常与我们对细胞过程的理解有关,特别是与疟疾寄生虫如何致病有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas J. LaCount其他文献
Douglas J. LaCount的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas J. LaCount', 18)}}的其他基金
Perturbing virus replication with interfering peptides
用干扰肽扰乱病毒复制
- 批准号:
10354399 - 财政年份:2022
- 资助金额:
$ 28.39万 - 项目类别:
Perturbing virus replication with interfering peptides
用干扰肽扰乱病毒复制
- 批准号:
10613481 - 财政年份:2022
- 资助金额:
$ 28.39万 - 项目类别:
A temporal view of the Plasmodium-red blood cell interactome
疟原虫-红细胞相互作用组的时间视图
- 批准号:
8477209 - 财政年份:2010
- 资助金额:
$ 28.39万 - 项目类别:
A temporal view of the Plasmodium-red blood cell interactome
疟原虫-红细胞相互作用组的时间视图
- 批准号:
8090281 - 财政年份:2010
- 资助金额:
$ 28.39万 - 项目类别:
A temporal view of the Plasmodium-red blood cell interactome
疟原虫-红细胞相互作用组的时间视图
- 批准号:
7864488 - 财政年份:2010
- 资助金额:
$ 28.39万 - 项目类别:
CHARACTERIZATION OF TRYPANOSOMA BRUCEI GP63 PROTEIN
布氏锥虫 GP63 蛋白的表征
- 批准号:
6446633 - 财政年份:2001
- 资助金额:
$ 28.39万 - 项目类别:
CHARACTERIZATION OF TRYPANOSOMA BRUCEI GP63 PROTEIN
布氏锥虫 GP63 蛋白的表征
- 批准号:
6136273 - 财政年份:2000
- 资助金额:
$ 28.39万 - 项目类别:
Defining the Role of Host Factors in Ebola Virus RNA Synthesis
定义宿主因子在埃博拉病毒 RNA 合成中的作用
- 批准号:
9312744 - 财政年份:
- 资助金额:
$ 28.39万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 28.39万 - 项目类别:
Discovery Projects