Raman Markers of Allograft Osseointegration
同种异体移植骨整合的拉曼标记
基本信息
- 批准号:8323837
- 负责人:
- 金额:$ 48.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllograftingAnimal ModelAreaAutologous TransplantationBiologicalBiologyBiomechanicsBone RegenerationBone TissueBone TransplantationCalibrationChemicalsCollectionComputer softwareDataData SetDefectDevelopmentDiffuseEvaluationFailureFiber OpticsFluorescenceGelatinHistologicHydroxyapatitesImageImaging technologyLightLightingLimb structureLipidsLongitudinal StudiesMagnetic Resonance ImagingMalignant Bone NeoplasmMeasurementMeasuresMethodologyMethodsMineralsModelingMorphologic artifactsMotionNatural regenerationNoiseOpticsOsseointegrationOutcomeOutcome MeasureProceduresProductionPropertyPublic HealthRaman Spectrum AnalysisRattusRecoveryResolutionSignal TransductionSolidSolutionsSpecialistSprague-Dawley RatsStagingStatistical MethodsTechniquesTechnologyTestingTimeTissuesTrainingWorkX-Ray Computed Tomographyabsorptionabstractingallogenic bone transplantationbonebone healingdata reductionhuman subjectimage reconstructionimaging modalityimplantationimprovedin vivolight scatteringlong boneosteosarcomaphantom modelreconstructionrepairedresearch studyresponsesoft tissuesuccesstherapeutic developmenttibiatissue phantomtomographytool
项目摘要
Abstract
The overall aim is development of noninvasive diffuse Raman tomographic methodology for evaluating the
state of bone allografts in a rat model and other problems in bone repair and healing (i.e. microdamage). The
applications advance concepts in two areas, including important therapeutic developments in bone graft
biology, as well as in the realization of an entirely new type of imaging technology with chemically specific
information. The project will consider the optical, biological, imaging, and data reduction aspects of the
problem, and the new in vivo imaging technology will be used to study graft success or failure noninvasively.
Phantoms with geometries defined by micro-computed tomography (micro-CT) data on rat hind limbs will be
used to reproduce bone and overlying tissue geometry accurately. Phantoms will contain gelatin (matrix
surrogate), hydroxyapatite (mineral surrogate), lipids, and light absorbing molecules to model both tissue optics
and Raman spectra. These phantoms will be used to define and test fiber optic Raman probe geometry, and
to assess such problems as motion artifacts. Our candidate Raman probe geometry is circumferential
illumination and collection, but other geometries will be considered. Tomographic reconstruction software will
be modified for use with low signal/noise ratio Raman data. A new maximum likelihood methodology will be
developed for extraction of Raman spectra and calculation of Raman intensities from data sets of remitted
Raman-scattered light. Raman band intensity ratios and multivariate statistical parameters will differentiate
between newly modeled bone tissue of the rat and the spectroscopically similar allografts. Additional spatial
information can be gained using other imaging modalities (MRI, micro-CT). Longitudinal studies in a rat model
will be used to assess the ability of this technology to distinguish between allograft tissue and newly modeled
bone tissue. Outcome Raman imaging measures of the allograft and microdamage experiments will be
correlated with other biomechanical and histochemical techniques.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL DAVID MORRIS其他文献
MICHAEL DAVID MORRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL DAVID MORRIS', 18)}}的其他基金
Chemical Structure Effects on Bone Response to Mechanical Load
化学结构对骨骼对机械负荷反应的影响
- 批准号:
8489107 - 财政年份:2010
- 资助金额:
$ 48.32万 - 项目类别:
Chemical Structure Effects on Bone Response to Mechanical Load
化学结构对骨骼对机械负荷反应的影响
- 批准号:
8120895 - 财政年份:2010
- 资助金额:
$ 48.32万 - 项目类别:
Chemical Structure Effects on Bone Response to Mechanical Load
化学结构对骨骼对机械负荷反应的影响
- 批准号:
8268927 - 财政年份:2010
- 资助金额:
$ 48.32万 - 项目类别:
Chemical Structure Effects on Bone Response to Mechanical Load
化学结构对骨骼对机械负荷反应的影响
- 批准号:
8661709 - 财政年份:2010
- 资助金额:
$ 48.32万 - 项目类别:
Chemical Structure Effects on Bone Response to Mechanical Load
化学结构对骨骼对机械负荷反应的影响
- 批准号:
7882768 - 财政年份:2010
- 资助金额:
$ 48.32万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 48.32万 - 项目类别:
Research Grant