Fate specification of corticospinal neurons by cell autonomous signaling
细胞自主信号传导对皮质脊髓神经元的命运规范
基本信息
- 批准号:8323686
- 负责人:
- 金额:$ 12.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmyotrophic Lateral SclerosisBioinformaticsBirthBrainCellsCerebral cortexCessation of lifeColorCorpus CallosumDNADataDecision MakingDevelopmentDiseaseElectroporationEmbryoEventGenerationsGenesGoalsHereditary Spastic ParaplegiaHeterogeneityHumanIndividualInjection of therapeutic agentInjuryInternal CapsuleInvestigationLaboratoriesMicroarray AnalysisMolecularMolecular AnalysisMotor Neuron DiseaseMotor NeuronsMusMutant Strains MiceNatural regenerationNeonatalNerve DegenerationNervous system structureNeurodegenerative DisordersNeuronsParalysedPathway interactionsPhosphotransferasesPlayPontine structurePopulationPrimary Lateral SclerosisProcessPropertyProteinsPublishingReportingRoleSamplingScreening procedureSeriesSignal TransductionSpinal CordSpinal cord injuryStagingTestingTherapeuticTimeTissuesWorkbasebody systemclinically relevantcombinatorialgain of functionin uteroin vivoin vivo Modelinjuredloss of functionmolecular markermotor neuron degenerationmotor neuron developmentmutantnestin proteinneuroblastneuron developmentnovelnovel therapeuticsoverexpressionpostnatalprogenitorpromoterpublic health relevancereceptorresearch studyresponseselective expressiontranscription factor
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to determine the molecular signals that instruct the fate specification and the lineage-specific development of corticospinal motor neurons (CSMN). These neurons are a clinically relevant population that, in humans, selectively dies in neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS), Hereditary Spastic Paraplegia (HSP), and Primary Lateral Sclerosis (PLS). They are also the cells permanently injured and responsible for paralysis in spinal cord injury (SCI). In the nervous system, studies aimed at investigating the molecular controls over birth, survival and connectivity of individual neuron types have been notoriously difficult, owing to the astonishing cellular heterogeneity of the tissue, combined with the inability to distinguish and purify one neuron type in isolation from others. In my postdoctoral work, I addressed this issue directly in the cortex, and have identified and begun to functionally characterize the first series of genes that in a combinatorial fashion uniquely identify CSMN as this neuron type develops [1]. Most relevant to the present proposal, we discovered that the transcription factor Fezf2 is a "master gene" that is both necessary for the birth of CSMN (i.e. CSMN are absent from the cortex of Fezf2-/- mice), and is at least in part sufficient to instruct the fate-specification of cortical progenitors to CSMN (i.e. elevated levels of Fezf2 can induce a "fate-switch" in progenitors destined to form upper layer neurons towards forming CSMN and deep layer neurons) [2]. Here, I build on this prior work and on new data from my own laboratory to directly investigate the central questions of this proposal: (1): What are the molecular signals that instruct the fate-specification and early development of cortical progenitors into CSMN? (Aim 1 and Aim 2) (2): Do postmitotic neurons of a different cortical type maintain the ability to generate CSMN in response to Fezf2 or, rather, are neuron lineage-specification decisions made and only modulated at the progenitor stage? (Aim 3) We present prior published work and substantial new data that support the feasibility of these experiments, and the direct relevance of the results to the development of novel therapeutic strategies to replace CSMN in neurodegenerative and traumatic diseases of the corticospinal circuitry.
PUBLIC HEALTH RELEVANCE: Different neurodegenerative diseases of the CNS are typically characterized by the progressive death of specific neuron types. Corticospinal motor neuron (CSMN) degeneration and injury is a key component of motor neuron disease (including ALS), and of spinal cord injury. Here we propose to determine the molecular signals that instruct the birth of this clinically relevant neuron type, and to investigate the extent to which CSMN can be regenerated for therapeutic application.
描述(由申请人提供):本提案的目标是确定指导皮质脊髓运动神经元(CSMN)命运指定和谱系特异性发育的分子信号。这些神经元是临床上相关的群体,在人类中,它们选择性地死于神经退行性疾病,包括肌萎缩侧索硬化症(ALS)、遗传性痉挛截瘫(HSP)和原发性侧索硬化症(PLS)。它们也是永久性损伤的细胞,并对脊髓损伤(SCI)的瘫痪负责。在神经系统中,针对单个神经元类型的出生、存活和连接的分子控制的研究一直是出了名的困难,因为组织的细胞异质性令人震惊,而且无法将一种神经元类型与其他神经元类型隔离开来。在我的博士后工作中,我直接在大脑皮层解决了这个问题,并已经确定并开始描述第一系列基因的功能,这些基因以组合的方式唯一地识别CSMN作为这种神经元类型的发育[1]。与目前的建议最相关的是,我们发现转录因子Fezf2是CSMN诞生所必需的“主基因”(即CSMN在Fezf2-/-小鼠的皮质中缺失),并且至少部分足以指示皮层祖细胞对CSMN的命运指定(即Fezf2水平的升高可以诱导注定要形成上层神经元的前体细胞向形成CSMN和深层神经元的“命运转换”)[2]。在这里,我在之前的工作和我自己实验室的新数据的基础上,直接研究这一提议的核心问题:(1):什么是指导皮质前体细胞向CSMN的命运指定和早期发展的分子信号?(目标1和目标2)(2):不同皮质类型的有丝分裂后神经元是否保持对Fezf2的反应而产生CSMN的能力,或者更确切地说,神经元谱系特征的决定是否做出并仅在祖细胞阶段进行调节?(目的3)我们介绍了先前发表的工作和大量新的数据,支持这些实验的可行性,以及结果与开发新的治疗策略的直接相关性,以取代皮质脊髓回路的神经退行性疾病和创伤性疾病。
公共卫生相关性:中枢神经系统的不同神经退行性疾病的典型特征是特定神经元类型的进行性死亡。皮质脊髓运动神经元(CSMN)变性损伤是运动神经元病(包括ALS)和脊髓损伤的重要组成部分。在这里,我们建议确定指导这种临床相关神经元类型诞生的分子信号,并调查CSMN再生用于治疗应用的程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Arlotta其他文献
Paola Arlotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Arlotta', 18)}}的其他基金
Systematic identification of enhancers to target the breadth of excitatory and inhibitory neuronal cell types in the cerebral cortex
系统鉴定增强剂以靶向大脑皮层兴奋性和抑制性神经元细胞类型的广度
- 批准号:
10512459 - 财政年份:2022
- 资助金额:
$ 12.39万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10686208 - 财政年份:2022
- 资助金额:
$ 12.39万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10502460 - 财政年份:2022
- 资助金额:
$ 12.39万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10523550 - 财政年份:2022
- 资助金额:
$ 12.39万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10664007 - 财政年份:2022
- 资助金额:
$ 12.39万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10404657 - 财政年份:2018
- 资助金额:
$ 12.39万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10159316 - 财政年份:2018
- 资助金额:
$ 12.39万 - 项目类别:
Modeling ASD-linked genetic mutations in 3D human brain organoids
在 3D 人脑类器官中模拟 ASD 相关基因突变
- 批准号:
10308455 - 财政年份:2018
- 资助金额:
$ 12.39万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
10223999 - 财政年份:2017
- 资助金额:
$ 12.39万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
9757833 - 财政年份:2017
- 资助金额:
$ 12.39万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 12.39万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 12.39万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 12.39万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 12.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists