Novel MRI Gradient Coil Manufacturing Methods

新型 MRI 梯度线圈制造方法

基本信息

  • 批准号:
    8312984
  • 负责人:
  • 金额:
    $ 34.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We aim to improve the performance of pre-clinical and clinical MRI systems, while reducing manufacturing costs. These aims will be achieved by replacing existing wire- based gradient coil construction methods with novel proprietary 3-D additive manufacturing techniques. 3-D printing of conductive nano-inks and of insulating layers (according to computer- generated designs) is a natural way to implement mathematical algorithms developed to optimize magnetic field coil configurations. We have already performed proof-of- principle studies showing that our mesoscale coil manufacturing techniques result in reduced resistance at high frequencies, a goal previously accomplished only with time- consuming processes involving the wrapping of expensive Litz wires. By including sacrificial materials into the additive manufacturing process, we have incorporated fractal branching channels for circulating coolant materials within the coil geometry. This innovation promises to significantly improve heat transfer. In Phase I, we will adapt gradient design algorithms to the additive manufacturing process, and build and characterize a prototype gradient coil. In cooperation with a strategic partner already well-established in the MRI field, we will prepare for Phase II by offering a design for a future human head-coil based on the novel manufacturing technology. PUBLIC HEALTH RELEVANCE: We aim to improve the performance of pre-clinical and clinical MRI systems, while reducing manufacturing costs. These aims will be achieved by replacing existing wire-based gradient coil construction methods with novel proprietary 3-D additive manufacturing techniques. In Phase I, we will adapt gradient design algorithms to the additive manufacturing process, and build and characterize a prototype gradient coil. In cooperation with a strategic partner already well- established in the MRI field, we will prepare for Phase II by offering a design of a human head- coil based on the novel manufacturing technology.
描述(由申请人提供):我们的目标是提高临床前和临床MRI系统的性能,同时降低制造成本。这些目标将通过用新型专有3D增材制造技术取代现有的基于导线的梯度线圈构造方法来实现。导电纳米油墨和绝缘层的3D打印(根据计算机生成的设计)是实现为优化磁场线圈配置而开发的数学算法的自然方式。我们已经进行了原理验证研究,表明我们的中尺度线圈制造技术可以降低高频下的电阻,这一目标以前只能通过耗时的过程来实现,其中包括缠绕昂贵的利兹线。通过将牺牲材料包括到增材制造过程中,我们已经将分形分支通道用于在线圈几何形状内循环冷却剂材料。这项创新有望显著改善传热。在第一阶段,我们将使梯度设计算法适应增材制造过程,并构建和表征原型梯度线圈。通过与MRI领域的战略合作伙伴合作,我们将为 第二阶段,基于新的制造技术为未来的人体头部线圈提供设计。 公共卫生相关性:我们的目标是提高临床前和临床MRI系统的性能,同时降低制造成本。这些目标将通过用新的专有3D增材制造技术取代现有的基于线的梯度线圈构造方法来实现。在第一阶段,我们将使梯度设计算法适应增材制造过程,并构建和表征原型梯度线圈。通过与在MRI领域已经建立的战略合作伙伴合作,我们将通过提供基于新制造技术的人体头部线圈设计来为第二阶段做准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irving Weinberg其他文献

Irving Weinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irving Weinberg', 18)}}的其他基金

Non-invasive efficient brain delivery of Prussian Blue for treatment of Alzheimer disease
普鲁士蓝无创有效脑部输送治疗阿尔茨海默病
  • 批准号:
    9908814
  • 财政年份:
    2019
  • 资助金额:
    $ 34.02万
  • 项目类别:
Non-invasive efficient brain delivery of Prussian Blue for treatment of Alzheimer disease
普鲁士蓝无创有效脑部输送治疗阿尔茨海默病
  • 批准号:
    10210039
  • 财政年份:
    2019
  • 资助金额:
    $ 34.02万
  • 项目类别:
Non-invasive efficient brain delivery of Prussian Blue for treatment of Alzheimer disease
普鲁士蓝无创有效脑部输送治疗阿尔茨海默病
  • 批准号:
    10247835
  • 财政年份:
    2019
  • 资助金额:
    $ 34.02万
  • 项目类别:
Non-invasive efficient brain delivery of Prussian Blue for treatment of Alzheimer disease
普鲁士蓝无创有效脑部输送治疗阿尔茨海默病
  • 批准号:
    10092710
  • 财政年份:
    2019
  • 资助金额:
    $ 34.02万
  • 项目类别:
Targeting Deep Brain Tumors with MRI-Insertable Magnetic Gradients and Nanopartic
利用 MRI 可插入磁梯度和纳米颗粒靶向深部脑肿瘤
  • 批准号:
    8524216
  • 财政年份:
    2013
  • 资助金额:
    $ 34.02万
  • 项目类别:
High-quality compact portable low-field head MRI with ultra-fast gradients
具有超快梯度的高质量紧凑型便携式低场头部 MRI
  • 批准号:
    9328157
  • 财政年份:
    2011
  • 资助金额:
    $ 34.02万
  • 项目类别:
Image Guidance Method for Diabetic Foot Surgery
糖尿病足手术的图像引导方法
  • 批准号:
    7999884
  • 财政年份:
    2010
  • 资助金额:
    $ 34.02万
  • 项目类别:
Low-Dose MRI-Compatible Molecular Breast Imaging Device
低剂量 MRI 兼容分子乳腺成像设备
  • 批准号:
    8669785
  • 财政年份:
    2010
  • 资助金额:
    $ 34.02万
  • 项目类别:
Low-Dose MRI-Compatible Molecular Breast Imaging Device
低剂量 MRI 兼容分子乳腺成像设备
  • 批准号:
    8525076
  • 财政年份:
    2010
  • 资助金额:
    $ 34.02万
  • 项目类别:
Low-Dose MRI-Compatible Molecular Breast Imaging Device
低剂量 MRI 兼容分子乳腺成像设备
  • 批准号:
    7800343
  • 财政年份:
    2010
  • 资助金额:
    $ 34.02万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 34.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了