Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
基本信息
- 批准号:8380719
- 负责人:
- 金额:$ 41.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcetatesAffectAmericasAmino AcidsBeta ParticleBiochemicalBiochemical PathwayBiochemical ProcessBiochemical ReactionBiochemistryBiologicalBiological AssayBiological ProcessBiologyBreast Cancer CellC14 isotopeCancer BiologyCancer CenterCancer DiagnosticsCancer PatientCancer cell lineCarbonCaringCell Culture TechniquesCell ProliferationCell RespirationCell physiologyCellsCerebrumChemicalsChemistryClinicalCytosineDataDeoxyribonucleosidesDependenceDevelopmentDevicesDiagnosticEmbryonic DevelopmentEngineeringEnvironmentEvolutionFatty AcidsGene ExpressionGlucoseGlycolysisGoalsGrowthImageImmuneImmune systemImmunologyImplantIn VitroInstructionKineticsKnowledgeLabelMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMicrofluidicsMolecularMolecular TargetMolecular and Cellular BiologyMonitorMusNanotechnologyNeoplasm MetastasisNon-MalignantNormal CellNucleosidesNucleotidesOutcomePatient RightsPatientsPharmaceutical PreparationsPhenotypePhysicsPopulationPositronPositron-Emission TomographyProductionProtonsRadiochemistryRadioisotopesRadiolabeledRegulator GenesResearchResolutionRouteScientistSourceStagingSupporting CellSystemT-LymphocyteTechnologyTestingTherapeuticTracerTranslatingTransport ReactionTumor-Infiltrating LymphocytesUniversitiesYeastsbasebiomathematicscancer cellcell growthcommercializationcostdesignfatty acid biosynthesisflexibilityglucose analogglucose metabolismhigh throughput technologyhospital bedimaging probeimprovedin vivolipid metabolismmalignant phenotypemetabolic abnormality assessmentmolecular imagingmouse modelmultidisciplinarynanoparticlenanosystemsneoplastic cellnovelnucleotide metabolismoncologyoperationpathogenpre-clinicalprototyperadiotracerreaction rateresponsetherapeutic targettooltumortumorigenesis
项目摘要
Transitions in metabolic pathways coincide with many important changes in cellular functions. Fundamental throughout evolution, metabolic switches are evident in yeast growth dynamics, embryonic development, mammalian cerebral responses, and immune system responses to pathogens. In addition to normal transitions
in biological processes, metabolic switches are also hallmark features of malignant transformation. These include the metabolic switch from oxidative metabolism to glycolysis by cancer cells, which yields dramatic increases in glucose metabolism to accommodate a low yield energy production and changes in a number of
biochemical pathways that switch to a dependence on glucose metabolism. Such changes have a profound impact on tumor cell proliferation, survival and metastasis via cell-autonomous effects. They also alter the heterotypic tumor microenvironment by the efflux of byproducts of glycolysis, such as protons and lactate, that can produce effects favorable to malignant cells but that can alter functions of, non-malignant cell populations in the surrounding environment There is growing evidence that this metabolic switch in cancer also provides for the use of glucose metabolites for anabolic purposes, such as nucleotide and fatty acid biosynthesis, required to support cell growth. However, the molecular instruction sets responsible for the metabolic switch to
glycolysis, as well as the functional consequences for cancer cells and other cells within the microenvironment, in particular tumor infiltrating lymphocytes (TILs), have not been defined.
This project employs new in vitro and in vivo (in mouse models) technologies to investigate the molecular commands that rearrange biochemical pathways during malignant transformations, as well as the biochemical and biological outcomes. Our group brings expertise in non-invasive metabolic imaging and integration of such technologies and principles into a microfiuidics chips. Technologies include: 1) the BetaBox for high throughput measurements of rate constants and fiuxes for glucose, nucleotide and lipid metabolism at single and multiple cell levels using a Si chip camera, embedded within a microfluidics-based cell culture array.
The camera images positron emission (or any other beta particle emission; e.g., C-14, P-32) from labeled tracers. In vitro imaging using the BetaBox \N\\\ be followed by in vivo imaging using microPET. This research is facilitated by a microfluidic based radiosynthesizer designed for simplified development and producfion of PET
radiolabeled molecular imaging probes. These technologies, although driven by the cancer biology of this project, generally allow for expanding in vitro and in vivo molecular imaging assays. The platforms will be exportable to the other NCI centers and have a commercialization route through Sofie Biosciences.
The multidisciplinary team includes expertise in molecular and cellular biology, immunology, chemistry, radiochemistry, biomathematics, physics, and engineering. Our primary focus is to develop and use in vitro molecular assays and devices to develop novel in vivo molecular imaging diagnostic assays of the biology and biochemistry of cancer. Our oncology focus is on early malignant transformations for diagnostics and alignment of molecular imaging diagnostics with the development, selection and assessment of the molecular, nanoparticle and adoptive cell targeted therapies explored in other NSBCC projects.
Our goals are: 1) Better define how metabolic switches in cancer cells drive tumor proliferation, survival and progression, and define how those switches interfere with tumor recognition by cells of the adaptive immune system. 2) Develop novel enabling technologies for high throughput in vitro and in vivo preclinical imaging measurements that enable the study of metabolic switching mechanisms employed during the
malignant transformation and for discovery of new PET molecular imaging probes. 3) Develop low cost, easyto-use chips for developing and synthesizing diverse arrays of PET molecular imaging probes. These chips can give basic and clinical scientists the means to investigate the biochemistry of cancer in vivo, from mouse models to patients and provide the means to translate that knowledge into diversified in vivo diagnostics. 4)
Accelerate the integration of targeted molecular imaging diagnostics with targeted molecular therapeutics to improve the care of cancer patients by aiding in selection of the right drug(s) for the right patient.
By comparing gene expression data with metabolic measurements from a large set of human breast cancer cell lines, we have identified a list of candidate metabolic regulator genes that strongly correlate with the glycolytic phenotype in vitro and in vivo as determined by PET studies in patients with the glucose analog, 2-deoxy-2-[ [8] F]fluoro-D-glucose (FDG). By inducing the loss of funtion of two of these candidate metabolic regulator genes tested thus far, we were able to switch cancer cells from their malignant phenotype of glycolysis to normal oxidative metabolism in vitro. These metabolic regulators or molecular commands (and others validated to affect the switch) will be used as tools to study biological outcomes of metabolic switches in cancer, both in malignant transformations and the impact on normal cells in the tumor microenvironment.
代谢途径的转变与细胞功能的许多重要变化相一致。在整个进化过程中,代谢开关在酵母生长动力学、胚胎发育、哺乳动物大脑反应和免疫系统对病原体的反应中都很明显。除了正常的过渡
在生物过程中,代谢转换也是恶性转化的标志性特征。这些包括癌细胞从氧化代谢到糖酵解的代谢转换,其产生葡萄糖代谢的显著增加以适应低产量能量产生和许多代谢产物的变化。
转换为依赖于葡萄糖代谢的生化途径。这些变化通过细胞自主效应对肿瘤细胞增殖、存活和转移具有深远影响。它们还通过糖酵解的副产物(如质子和乳酸盐)的流出来改变异型肿瘤微环境,其可以产生有利于恶性细胞的作用,但可以改变周围环境中的非恶性细胞群体的功能。越来越多的证据表明,癌症中的这种代谢开关还提供了葡萄糖代谢物用于合成代谢目的,如核苷酸和脂肪酸生物合成,以支持细胞生长。然而,负责代谢转换的分子指令集,
糖酵解以及微环境中的癌细胞和其他细胞,特别是肿瘤浸润淋巴细胞(TIL)的功能后果尚未确定。
该项目采用新的体外和体内(小鼠模型)技术来研究恶性转化过程中重新排列生化途径的分子命令,以及生化和生物学结果。我们的团队带来了非侵入性代谢成像的专业知识,并将这些技术和原理集成到微流控芯片中。技术包括:1)BetaBox用于使用嵌入在基于微流体的细胞培养阵列内的Si芯片相机在单个和多个细胞水平上高通量测量葡萄糖、核苷酸和脂质代谢的速率常数和通量。
照相机对正电子发射(或任何其他β粒子发射;例如,C-14,P-32)。使用BetaBox \N\\进行体外成像,然后使用microPET进行体内成像。本研究是由一个微流控为基础的放射性合成器,旨在简化开发和生产的PET
放射性标记的分子成像探针。这些技术,虽然由本项目的癌症生物学驱动,但通常允许扩展体外和体内分子成像测定。这些平台将可出口到其他NCI中心,并通过Sofie Biosciences进行商业化。
多学科团队包括分子和细胞生物学、免疫学、化学、放射化学、生物数学、物理学和工程学方面的专业知识。我们的主要重点是开发和使用体外分子检测和设备,以开发新的癌症生物学和生物化学的体内分子成像诊断检测。我们的肿瘤学重点是早期恶性转化的诊断和分子成像诊断与其他NSBCC项目中探索的分子,纳米颗粒和过继细胞靶向治疗的开发,选择和评估的对齐。
我们的目标是:1)更好地定义癌细胞中的代谢开关如何驱动肿瘤增殖,存活和进展,并定义这些开关如何干扰适应性免疫系统细胞的肿瘤识别。2)开发用于高通量体外和体内临床前成像测量的新的使能技术,从而能够研究
恶性转化和发现新的PET分子成像探针。3)开发低成本,易于使用的芯片,用于开发和合成PET分子成像探针的各种阵列。这些芯片可以为基础和临床科学家提供研究体内癌症生物化学的方法,从小鼠模型到患者,并提供将这些知识转化为多样化体内诊断的方法。四、
加速靶向分子影像诊断与靶向分子治疗的整合,通过帮助为合适的患者选择合适的药物来改善癌症患者的护理。
通过比较基因表达数据与来自大量人类乳腺癌细胞系的代谢测量,我们已经确定了一系列候选代谢调节基因,这些基因与体外和体内糖酵解表型密切相关,如通过PET研究在具有葡萄糖类似物2-脱氧-2-[ [8] F]氟-D-葡萄糖(FDG)的患者中确定的。通过诱导迄今为止测试的这些候选代谢调节基因中的两个的功能丧失,我们能够在体外将癌细胞从糖酵解的恶性表型转换为正常的氧化代谢。这些代谢调节剂或分子指令(以及其他经验证可影响开关的分子指令)将被用作研究癌症中代谢开关的生物学结果的工具,包括恶性转化和对肿瘤微环境中正常细胞的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Christofk其他文献
Heather Christofk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Christofk', 18)}}的其他基金
Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
- 批准号:
9883715 - 财政年份:2018
- 资助金额:
$ 41.18万 - 项目类别:
Metabolic Control of Hair Follicle Stem Cell Homeostasis and Tumorigenesis
毛囊干细胞稳态和肿瘤发生的代谢控制
- 批准号:
10361228 - 财政年份:2018
- 资助金额:
$ 41.18万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
7983563 - 财政年份:2010
- 资助金额:
$ 41.18万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8545710 - 财政年份:
- 资助金额:
$ 41.18万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8324026 - 财政年份:
- 资助金额:
$ 41.18万 - 项目类别:
Molecular Imaging of Metabolic Switches in Malignant Transformations
恶性转化中代谢开关的分子成像
- 批准号:
8707989 - 财政年份:
- 资助金额:
$ 41.18万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 41.18万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 41.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists