Microtubule regulation by small molecules.
小分子的微管调节。
基本信息
- 批准号:8351179
- 负责人:
- 金额:$ 44.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:BindingBinding SitesBiological FactorsCell CycleCell PolarityCell modelCell surfaceCellsCellular MorphologyClinicalCytoplasmCytoskeletonDataDiseaseDrug CombinationsDrug Delivery SystemsEpothilonesEquilibriumG-Protein-Coupled ReceptorsHerbicidesHumanIndividualIntracellular TransportIntuitionKnowledgeLateralLifeLightMapsMass Spectrum AnalysisMeasuresMechanicsMethodsMicrotubulesMitosisMitoticMolecular ModelsMovementMutationMutation AnalysisPaclitaxelParasitesPatientsPharmaceutical PreparationsPharmacotherapyPlantsPolymersProcessPropertyProtein SubunitsProteinsProtozoaRegulationResistanceRoleSignal TransductionSiteSourceStructureStudy modelsSurfaceTubulinanalogbasebeta Tubulincell motilitydesignflexibilityimprovedmolecular modelingnoveloryzalinphysical propertypre-clinicalpreclinical studysmall moleculetraffickingtumor
项目摘要
Natural products have historically been the source of most of the microtubule (MT)-targeting small molecules whose properties have allowed them to become useful drugs. That remains true of most but not all of the compounds in this study. Some, such as the new MT-stabilizing compound peloruside, are natural products, as is the clinically established MT-stabilizer taxol. Others, such as analogs of the MT-stabilizing epothilones, are semisynthetic derivatives based on known natural compounds. Others still are totally synthetic compounds. We have investigated two new binding sites on tubulin for anti-MT drugs, as well as the results of drug binding at these, or the longer-known sites, on the properties of MT and the effects on cells. The new binding sites are for the synthetic MT destabilizer, oryzalin, and the natural product MT stabilizer, peloruside. The effects on cells involve these drugs as well as more established drugs, especially clinical agents.
Oryzalin and other dinitroanilines are effective herbicides due to a high selectivity for plant tubulin over mammalian tubulin. We have shown that these compounds, which destabilize MT, also show selectivity for protozoal parasite tubulin compared to mammalian tubulin. We have continued our effort to understand this selectivity by mapping the binding site for oryzalin on tubulin using detailed analysis of mutations in parasite tubulin that confer resistance to this compound. We hope to use this detailed knowledge to design compounds that bind better and with improved selectivity to parasite tubulin, thereby affording clinically useful antiparasite drugs.
We have used a similar approach to define the binding site and mode of action of peloruside. We have already shown by mass spectrometric studies and molecular modeling that this compound binds to a site on beta tubulin quite distinct from that of taxol, a clinically important MT-stabilizing drug. Selecting and mapping mutations in human tubulin that confer resistance to peloruside have confirmed our mass spectrometry studies, and allowed an improved understanding of the binding site, how occupancy alters MT stability, and how this differs from taxol action. We hope to use this knowledge to understand the differing mechanisms of peloruside and taxol, and provide a basis for combination of these drugs clinically.
It is already clear from the binding site mapping and from preclinical studies that taxol and peloruside stabilize MT by different mechanisms. Structural study of the two binding sites suggests a differing balance of longitudinal and lateral stabilization in the MT polymer, suggesting that the mechanical properties of the MT may differ with the two drugs. Unperturbed MT are the most rigid intracellular protein polymers known, and taxol increases their flexibility 10-fold. We are measuring the rigidity of individual fluorescent MT after binding of taxol or peloruside in order to relate differences in binding site structures to differences in MT properties. This understanding could provide an explanation for the synergistic effect observed for combinations of these drugs in preclinical cellular models.
Inside the cell, MT occur in arrays. The intrinsic polarity of individual MT is shared throughout the arrays, and this asymmetry underlies nearly all intracellular transport and signaling. We previously showed the role of MT array polarity in intracellular signaling by p53, and we have extended this to demonstrate the MT basis of the directional transport of G-protein-coupled receptors from the ER to the cell surface. On a larger scale, we have investigated the role of MT in overall cell polarity and directed movement. Cells respond to many environmental signals by moving up or down gradients of molecules or other signals such as light and substrate rigidity. Using the methods developed in our lab to study durotaxis, the preferential movement of cells from softer to more rigid surfaces, we will use MT-targeting drugs to define the role of MT polarity in this directed cell movement.
The roles of MT extend throughout the life of the cell, not only in mitosis, but also in the 98+% of the cell cycle that is not mitosis. These vital roles include those from above establishing cellular polarity, supporting intracellular transport and signaling, and allowing directionality in cell movements. MT-targeting drugs are active in all cells, not only in mitotic ones, and indeed some targets of clinical use of anti-MT drugs are post-mitotic cells. We have argued that even in clinical settings where intuition says that mitosis is the target, such as in patient tumors, data indicate that MT-targeting drugs are effective due to interference with non-mitotic processes, such as those mentioned above. We plan to combine the experimental approaches described to obtain a better understanding of the non-mitotic processes that are targeted by the action of anti-MT drugs in order to improve the clinical usefulness of these agents.
天然产物历来是大多数微管(MT)靶向小分子的来源,其特性使它们成为有用的药物。这项研究中的大部分化合物都是如此,但不是全部。有些,如新的mt稳定化合物peloruside,是天然产物,如临床建立的mt稳定剂紫杉醇。其他的,如稳定mt的埃泊西酮的类似物,是基于已知天然化合物的半合成衍生物。其他的仍然是完全合成的化合物。我们研究了抗MT药物在微管蛋白上的两个新的结合位点,以及药物在这些位点或更早已知的位点结合的结果,对MT的性质和对细胞的影响。新的结合位点是合成的MT不稳定剂oryzalin和天然产物MT稳定剂peloruside。对细胞的影响包括这些药物以及更成熟的药物,特别是临床药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan L Sackett其他文献
338 - Comparative Analysis of Hydrazine- and Hydrazide-Functionalized Optical Probes for the Detection of Oxidative Stress Induced Biomolecule Carbonylation in Live Cells
- DOI:
10.1016/j.freeradbiomed.2015.10.390 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Kamalika Mukherjee;Tak Ian Chio;Dan L Sackett;Susan L Bane - 通讯作者:
Susan L Bane
Dan L Sackett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan L Sackett', 18)}}的其他基金
Microtubule regulation by isotype expression, post translational modification, and by small molecules.
通过同种型表达、翻译后修饰和小分子进行微管调节。
- 批准号:
10920197 - 财政年份:
- 资助金额:
$ 44.34万 - 项目类别:
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 44.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 44.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 44.34万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 44.34万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 44.34万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 44.34万 - 项目类别:
Standard Grant